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The pervasive use of computer-generated graphics in our society has led to

strict demands on their visual realism. Generally, users of rendering software

want their images to look, in various ways, “real”, which has been a key driving

force towards methods that are based on the physics of light transport.

Until recently, industrial practice has relied on a different set of methods

that had comparatively little rigorous grounding in physics—but within the

last decade, advances in rendering methods and computing power have come

together to create a sudden and dramatic shift, in which physics-based methods

that were formerly thought impractical have become the standard tool. As

a consequence, considerable attention is now devoted towards making these

methods as robust as possible.

In this context, robustness refers to an algorithm’s ability to process arbitrary

input without large increases of the rendering time or degradation of the output

image. One particularly challenging aspect of robustness entails simulating

the precise interaction of light with all the materials that comprise the input

scene. This dissertation focuses on one specific group of materials that has

fundamentally been the most important source of difficulties in this process.

Specular materials, such as glass windows, mirrors or smooth coatings (e.g. on

finished wood), account for a significant percentage of the objects that surround

us every day. It is perhaps surprising, then, that it is not well-understood how

they can be accommodated within the theoretical framework that underlies

some of the most sophisticated rendering methods available today.

Many of these methods operate using a theoretical framework known as



path space integration. But this framework makes no provisions for specular

materials: to date, it is not clear how to write down a path space integral

involving something as simple as a piece of glass.

Although implementations can in practice still render these materials by

side-stepping limitations of the theory, they often suffer from unusably slow

convergence; improvements to this situation have been hampered by the lack of

a thorough theoretical understanding.

We address these problems by developing a new theory of path-space light

transport which, for the first time, cleanly incorporates specular scattering into

the standard framework. Most of the results obtained in the analysis of the

ideally smooth case can also be generalized to rendering of glossy materials

and volumetric scattering so that this dissertation also provides a powerful new

set of tools for dealing with them.

The basis of our approach is that each specular material interaction locally

collapses the dimension of the space of light paths so that all relevant paths lie

on a submanifold of path space. We analyze the high-dimensional differential

geometry of this submanifold and use the resulting information to construct

an algorithm that is able to “walk” around on it using a simple and efficient

equation-solving iteration.

This manifold walking algorithm then constitutes the key operation of

a new type of Markov Chain Monte Carlo (MCMC) rendering method that

computes lighting through very general families of paths that can involve

arbitrary combinations of specular, near-specular, glossy, and diffuse surface

interactions as well as isotropic or highly anisotropic volume scattering. We

demonstrate our implementation on a range of challenging scenes and evaluate

it against previous methods.
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CHAPTER 1

INTRODUCTION

The central goal of physics-based rendering is the generation of photorealistic

images by simulating the flow of light through increasingly elaborate mathe-

matical models of our world. Due to the pervasive use of computer-generated

graphics, the demands on these simulations have grown rapidly over the years,

fueling the creation of an entire industry dedicated to realistic rendering of

architecture, nature, human and animal characters, as well as a wide range of

other visual phenomena.

What is truly remarkable about these developments, particularly in relation

to industrial practice in the preceding decade, is that they have squarely estab-

lished a new paradigm of physics-based modeling, which follows the conviction

that a thorough understanding of how light interacts with an object should

precede attempts to faithfully reproduce its appearance. As a result, formerly

artist-driven endeavors, such as the design of a shader in a rendering system,

have turned into a creative union of not only mathematics and optics, but also

biology, zoology, ecology, medical physics, and other disciplines. This is not

to say that the role of aesthetics has been diminished by these innovations—

realized within a framework that is based on physical laws it remains a key

driving force.

Of course, this physics-based approach does not stem from a surprising

new insight; rather, it is the widespread availability of sufficient computational

resources that has now made its pursuit feasible. At this time, is not uncommon

for a company invested in computer graphics to employ one or more researchers

solely devoted to the implementation and improvement of light transport

models. Digital visual effects studios are an example of this trend, being
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interested in objects ranging from everyday paint, metal and glass surfaces to

organic substances such as the iridescent feather of a bird and the eyes and hair

of humans and animals.

A less obvious aspect of the pursuit of realistic rendering is that it has created

formidable technical challenges that currently limit the extent to which it can

be implemented. Intuition leads us to believe that the realism of an image

should improve as the mathematical model employed increasingly resembles

the underlying physics: clearly, with each approximation that is removed, there

is less room for modeling errors in the final result. But this view neglects

the imperfect nature of the algorithms that are used to solve the equations

of the resulting rendering problem. For instance, it may be desirable to give

a virtual human a more vivid pair of eyes by carefully modeling cornea, iris

and sclera, with their attendant index of refraction changes. Yet, as part of a

virtual environment, this “enhanced” character may prove so difficult to render

that it becomes entirely impractical to produce an acceptable image given any

reasonable amount of time. In this way, the pursuit of more realistic models

may effectively lead to inferior results.

Usually, certain classes of light paths that occur in the underlying simulation

are to blame for these difficulties. Given the nature of currently used rendering

algorithms, which generally rely on some form of random sampling to find light

paths, problems tend to arise when an important class of paths is found with too

low a probability. A particularly well-known example is that of specular-diffuse-

specular paths, in which light is first scattered by a specular material such as a

smooth conductor or a dielectric, followed by a diffuse (or other non-specular)

material and then another specular interaction. This includes fairly common

situations such as a tabletop seen through a drinking glass sitting on it, a bottle
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containing shampoo or other translucent liquid, a shop window viewed and

illuminated from outside, as well as the aforementioned ubiquitous example

of scattering inside an eye. Even in scenes where these paths do not cause

dramatic lighting effects, their presence can lead to excessively slow convergence

in rendering algorithms that attempt to account for all transport paths.

Seen from a high level, most rendering algorithms solve a high-dimensional

integration problem by randomly point-sampling an integrand that describes

the amount of transported light. The presence of such “difficult” light paths

leads to small regions in the integration domain where the integrand takes

on high values; yet, their comparatively low volume means that only few

samples are likely to be placed there, resulting in an inaccurate estimate of the

integral’s value. Depending on the rendering method used, these inaccuracies

can manifest either as blur or as noise in the output image, quickly making it

unusable as the errors increase.

To approach these challenges, this dissertation proposes a new theoretical

framework and algorithms that enable a more systematic exploration of the

integration domain, driven by geometric insights about the structure of these

problematic paths. The foundation of this theory is a well-known physical

property of light, namely that it travels along Fermat paths. Usually, these paths

intuitively correspond to taking the “fastest” way possible; more generally, they

are defined as having stationary optical length with respect to small variations

of the path. Importantly, this principle means that the Fermat paths constitute a

subset of the set of all potential light paths.

When an environment contains specular materials such as smooth dielectrics

or conductors, a key observation with far-reaching implications is that this subset

has a lower dimension; as we shall see later, each specular interaction effectively
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collapses some of the dimensions of the space of light paths, producing a

submanifold of path space. Building on this property, we propose an extended

theory of path-space light transport; it is the first such theory that cleanly

incorporates specular scattering, rather than relegating it to the position of an

awkward corner case. This theory also has algorithmic implications that we

demonstrate by developing a new rendering technique, which creates images by

“walking around” on the manifold of paths informed by its high-dimensional

differential geometry.

This work was initially motivated by the difficulties with rendering light

paths involving perfectly specular materials, such as polished mirrors or glass.

But wherever ideally specular paths are troublesome, nearly specular paths

involving glossy (i.e. slightly roughened) materials are also troublesome. They

can be more problematic, in fact, because they elude special mechanisms de-

signed to handle specular interactions. These “glossy paths” have become more

important as material models have evolved; finding them efficiently is a key

open problem of light transport simulations.

Surprisingly, most of the results obtained in the analysis of the ideally smooth

case can be generalized to rendering of glossy materials. Thus, this thesis also

provides a powerful new set of tools for dealing with this very challenging

class of light paths. After incorporating these generalizations, the end result of

this dissertation is a Markov Chain Monte Carlo algorithm to compute lighting

through very general families of paths that can involve arbitrary combinations

of specular, near-specular, glossy, and diffuse surface interactions as well as

isotropic or highly anisotropic volume scattering interactions.
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1.1 Summary of original contributions

The work in this dissertation builds on the path-space framework and the

Metropolis Light Transport algorithm proposed by Eric Veach [70]. Our contri-

butions are as follows:

Generalized path space for surfaces and volumes. We provide a complete

derivation of light transport operators and a path space integration frame-

work that accounts for the effects of both surfaces and volumes. This leads to

interesting differences compared to prior work.

Specular light transport on path-space manifolds. A key contribution of this

work is an analysis of light transport involving specular paths as a manifold

embedded in path space. Using this manifold representation, we develop a

generalized geometric term that, for the first time, makes it possible to cleanly

write down path-space integrals involving specular materials.

Manifold walking algorithm. We propose an iterative equation-solving algo-

rithm that is able to move around on the specular manifold, making it possible

to solve for configurations that lie in the neighborhood of a known path. By

opting for a local rather than a global search, our algorithm is able to operate in

a very general setting that makes minimal assumptions about the material type

and surface representation.

Manifold Exploration. Combining our results on specular light transport

and the manifold walking algorithm, we propose the manifold perturbation, a

transition rule that explores the specular manifold to find the steady-state

lighting distribution of a scene as part of a Metropolis-Hastings-type method.
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This perturbation can be used in the frameworks of Metropolis Light Transport

(MLT) or Energy Redistribution Path Tracing (ERPT), producing rendering

algorithms with support for specular paths fundamentally built in at the core—

we refer to this as Manifold Exploration. In equal-time comparisons on very

challenging scenes, they compare favorably to previous work in Monte Carlo

and Markov Chain Monte Carlo (MCMC) rendering.

1.2 Organization of the dissertation

The dissertation is divided into a total of 9 chapters and supplementary appen-

dices. It is organized as follows: Chapter 2 presents the basics of light transport,

as well as an overview of relevant prior work on global illumination rendering

algorithms. In Chapter 3, we derive a path-space integration framework for

surface and volume light transport that provides a foundation for the following

chapters, but does not yet account for specular materials. In Chapter 4 we

develop the theory of the specular manifold, used to handle interactions with

ideal specular (polished) surfaces, and offset specular manifolds, which provide a

graceful generalization to near-specular materials. In Chapter 5, we derive an

algorithm to move from one path to another on a specular or offset specular

manifold, and use it in Chapter 6 to build an algorithm that generates Markov

sequences in path space as part of the Metropolis Light Transport or Energy Re-

distribution Path Tracing frameworks to provide methods for rendering scenes

with any kind of light transport. We go on in Chapter 7 to extend the theory

and algorithm to the case of participating media, and after showing results and

comparisons in Chapter 8, we conclude in Chapter 9.
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CHAPTER 2

BACKGROUND

In this dissertation, we first propose an extended theory of path space light

transport involving specular materials and then show how to construct a prac-

tical rendering method that is based on it. Since these steps build upon a

number of prior works, this chapter reviews relevant background material and

introduces terminology that is used in the remainder of the dissertation. Most

material is covered at a fairly high level; we refer the reader to the excellent

books by Dutré et al. [10] and Pharr et al. [49] for an in-depth discussion of the

theory of light transport and a wide range of different rendering techniques.

2.1 Problem setting

The principal purpose of light transport algorithms is the creation of renderings,

usually two-dimensional images that depict a virtual environment, as if created

by a hypothetical camera located in that environment. To accomplish this task,

they require a complete description of the desired environment, including the

placement of all objects and a characterization of their physical properties. The

output image then results from a detailed simulation of all of the relevant

physical laws of light, particularly transport and scattering, i.e. the propagation

of light and its interaction with the materials that comprise the objects.

These laws exist in a hierarchy of increasing approximations, each of which

can be derived from the preceding one by a simplification and, consequently,

some loss of accuracy when compared to physical experiments. Quantum elec-

trodynamics (QED), describing the interaction between the quanta of light and

electric charge, currently constitutes the de facto top of this hierarchy. Foregoing
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quantization, the next level is given by the theory of electromagnetic fields and

Maxwell’s equations. In the limit of small wavelengths, physical effects such

as diffraction and interference become negligible and the considerably simpler

laws of geometric optics emerge [41]. Even within geometric optics, further

approximations exist—for instance, by neglecting the effects of polarization, or

assuming that the index of refraction is piecewise constant.

Light transport simulations in computer graphics are generally located at

the very bottom of this hierarchy, making use of significantly simplified variants

of geometric optics. The reason for this apparent lack of rigor is that such detail

is, quite simply, not needed for most rendering applications, as the assumptions

underlying the approximations are satisfied without problems: the wavelength

of visible light (380-780nm) is minuscule compared to the dimensions of any

normal scene to be rendered, and the effects of quantization, wave properties,

or polarization are usually too subtle to be visible to a human observer. Where

needed, certain aspects of the more comprehensive theories (e.g. diffraction on

metallic surfaces [61] or fluorescence [22]) can still be “imported” in a localized

manner, while staying within the confines of geometric optics. The following

section describes the specifics of the laws used in this dissertation.

2.2 Light transport model

We rely on a simplified model of geometric optics, which has become popular in

computer graphics. This model assumes incoherent, unpolarized illumination

that travels along a straight line until an interaction (i.e. a scattering event)

occurs. In a slight abuse of terminology, this illumination is assumed to be

conveyed by means of photons—in this context, these are idealized energy-

carrying particles without their usual wave properties. Two types of photon
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(a) Surface scattering (b) Volumetric scattering

Figure 2.1: We build upon geometric optics framework, which distinguishes between
scattering by a surface (the interface of an object) and scattering by a volume
(the interior of an object, or the surrounding space).

interactions are possible: scattering at a surface, and scattering in a volume that

fills the region between surfaces. An example of the first case would be the

refraction of a photon by a boundary between dielectrics, such as glass and air,

whereas the second case models scattering in the interior of a turbid substance

like fog or milk (Figure 2.1). We now briefly review the concept of radiance,

which is required to precisely characterize these interactions.

2.2.1 Radiance

In geometric optics, the main quantity of interest is radiance. Given a point

x and a direction ω, the radiance L(x, ω) describes how much illumination

flows through the point, in this direction. Intuitively, radiance can be measured

approximately by registering the amount of energy (i.e. the rate of photons)

arriving on a small surface patch dA at x that is perpendicular to ω and sensitive

to a small cone of directions dω around ω. In a hypothetical apparatus that

implements this measurement (Figure 2.2), we must also divide the resulting

number by the exposure time to account for the length of the measurement, as

9



Figure 2.2: Radiance expresses the amount of energy flowing through a point x, in
a direction ω. It can be measured by determining the power received by
surface dA sensitive to a cone of directions dω, where dA, dω→0.

well as the surface area dA and solid angle dω to account for the size of the

sensor. In the limit of temporal steady state and small dA and dω, we then

obtain radiance, usually expressed in units of W · sr−1 ·m−2. For a thorough

review of radiance and many related radiometric quantities, we refer the reader

to Preisendorfer [51] and Veach [67].

When light travels unobstructed (i.e. through vacuum), radiance remains

invariant along rays:

L(x, ω) = L(x + tω, ω), t > 0.

This is an important property, since it means that a complete mathematical

description of a virtual environment can be obtained simply by specifying how

L behaves in places where an obstruction interacts with the illumination. In

our case, this can either be a surface or a volume; Sections 2.2.3 and 2.2.4 will

provide such a specification for each type in the form of an energy balance

equation. Before defining these equations, the next section will review necessary

spaces and integration measures.
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(a) The scene is described as union of
manifolds inside a finite domain.

(b) The relation of the area, solid angle, and pro-
jected solid angle measures.

Figure 2.3: An overview of commonly used domains and measures

2.2.2 Commonly used domains and measures

We assume that the scene to be rendered is constructed from a set of surfaces

that all lie inside a finite domain Ω ⊆ R3. The union of these surfaces shall

be denoted asM⊂ Ω and must be a well-defined smooth manifold1. We will

often integrate functions over this manifold, using the notation∫
M

f (x)dA(x),

where dA(x) is the area measure and f is an integrable function onM.

The set of directions is another important space that will be used many times.

We represent directions using normalized vectors on the unit 2-sphere S2 and

from now on use the following notation to express integration with respect to

the solid angle measure:∫
S2

f (ω)dσ(ω) :=
∫ 2π

0

∫ π

0
f (θ, φ) sin θ dθ dφ,

where f is an integrable function on the sphere expressed in terms of polar

coordinates or unit vectors on R3.
1This smoothness assumption is often violated in practice, e.g. at edges between triangles in a

triangle mesh. This is permitted, as long as the non-smooth regions have Lebesgue measure zero;
in other words, the results of this dissertation extend to discretized meshes, but not surfaces
with fractal-like non-smooth structure. For simplicity, derivations assume C∞ smoothness.
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The projected solid angle measure finds use when integrating a physical quantity

that arrives or leaves a point on a surface. It introduces an extra cosine factor in

the definition:

∫
S2

f (ω)dσ⊥(ω) :=
∫ 2π

0

∫ π

0
f (θ, φ) |cos θ| sin θ dθ dφ.

The reason for this factor is best explained using an example: consider a thin

beam of light that illuminates a surface from a perpendicular direction. When

the beam is rotated so that it hits the surface at a grazing angle, it will spread

out over much larger area, contributing less energy to each individual surface

position within the beam. The cosine term captures this angle-dependent

foreshortening effect. Integrating radiance incident on a surface in this way

yields irradiance, the incident power per unit area.

When integrating a quantity that arrives at or leaves a specific point x, we

will emphasize this by writing

∫
S2

f (ω)dσx(ω) and
∫

S2
f (ω)dσ⊥x (ω).

In the second case, it means that the cosine term is equal to the cosine of the

angle between ω and the surface normal N(x) (where x ∈ M). These two

measures then are related by

dσ⊥x (ω) = dσx(ω) |ω · N(x)| .

The projected solid angle measure can also be interpreted as a perpendicular

projection of a spherical element onto a unit disc perpendicular to the normal

direction, known as the Nusselt analog. Figure 2.3 (b) shows how all three

measures dσ⊥x (ω), dσx(ω) and dA can be related in this way.

Finally, sometimes we will integrate functions that are defined on ray-space

M× S2. This is nothing other than the Cartesian product of surface positions
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and directions, with the corresponding product measure, i.e.∫
M

∫
S2

f (x, ω)dσ⊥x (ω)dA.

2.2.3 Energy balance equation for volumes

The behavior of light passing through an optically interacting material is gov-

erned by absorption and scattering. In turbid substances like fog or milk, these

occur due to collisions between photons and the optically active contents of

the material, such as water droplets or fat globules. Unfortunately, the sheer

number of these small suspended particles makes it impractical to account for

their effects individually.

Luckily, much like the analysis of gases in statistical physics, large popu-

lations of scattering particles can also be studied effectively using the tools of

probability theory and statistics. The main insight of this approach is that the

exact position of all the individual water droplets in a volume filled with humid

air can be neglected during computation, as long as their average effects on

light can somehow be modeled.

Linear transport theory provides a convenient mathematical framework that

does precisely this by describing the propagation of light through a random

medium, a statistical interpretation of the aggregate scattering behavior of many

small particles that fill a region of space. This theory requires us to assign a

particle density function to every point in space. A photon traveling along a

straight line trajectory can then be absorbed or scattered (i.e. redirected) by

particles that spontaneously and randomly “manifest” in front of the photon

proportionally to this particle density, hence turning the trajectory into a random

walk. The interactions are made precise by the radiative transfer equation (RTE),

which we will now briefly describe.
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Figure 2.4: Rendering of a glass of milk, whose contents were simulated using the
Radiative Transfer Equation described in this section.

Roughly speaking, the RTE expresses all the different ways in which the host

medium can deviate from conservation of radiance2 along a ray (x, ω). It does

this by equating the directional derivative of radiance L(x, ω) in direction ω to

a sum of terms that each map to an intuitive physical explanation (Figure 2.5).

On the domain Ω ⊆ R3, the steady-state form of the RTE is given by

(ω · ∇) L(x, ω) + σt(x) L(x, ω) =

σs(x)
∫

S2
fp(x, ω′→ω) L(x, ω′)dσx(ω

′) + Le(x, ω), x ∈ Ω◦, (2.1)

where σs and σt are the scattering and extinction coefficients, fp is the phase function,

and Le represents emitted radiance. We will later specify boundary conditions

2In vacuum, radiance is fully conserved, i.e. (ω · ∇) L(x, ω) = 0
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Absorption Out-scattering In-scattering

Extinction

Emission

Figure 2.5: The different terms of the radiative transfer equation each have an intuitive
physical interpretation

on the set of surfaces M ⊆ Ω, hence the above equation only holds on the

interior of the domain, i.e. Ω◦ := Ω \M.

In (2.1), the first term is the aforementioned directional derivative. The

second extinction term accounts for light that collides with the particles that fill

the volume. Such a collision causes it to be either absorbed or redirected into

another direction and thus removed from the ray.

The particles also scatter a portion of the illumination that is traveling along

different rays passing through the point x, and some of it will be redirected into

direction ω. This is modeled by the third term, which convolves the radiance

and phase3 functions over the sphere to obtain all light that is locally added

to the ray (x, ω). Given light arriving from direction ω′, the phase function

expresses the probability density of it being scattered into direction ω. The

precise form of this function depends on the shape and optical properties of

the particles that make up the volume. The measure dσx indicates that the

integration is done with respect to solid angles at x.

When the medium itself emits illumination (e.g. a flame), the last term

involving Le describes this effect. Note that in contrast to L, the function Le has

units of radiance per unit length at interior points x ∈ Ω◦.

3The name “phase function” is historically due to the phases (i.e. the varying brightness) of
celestial bodies in astronomy.
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Note the subtle difference between the term volume, which refers to a region

of space, and medium, which describes its contents. In practice, these are often

used interchangeably.

In the specification of a scene, the main objects of interest then are:

(i) the extinction cross-section σt, which is sometimes further decomposed

into the product of a particle density (units of m−3) and the particle surface

area (units of m2). By itself, σt can be interpreted as the inverse expected

distance between interactions with particles (units of m−1). The higher this

number, the more “optically dense” the material will be.

(ii) the scattering albedo σs/σt, i.e. the relative probability of a non-absorbing

scattering event taking place following the collision of a photon with a

particle. (unitless).

(iii) the phase function fp(ωi→ωo), a conditional probability distribution over

scattered directions ωo for a given incident direction ωi (units of 1/sr).

An enormous body of work on linear transport and the RTE exists; we refer the

reader to [2, 24] for a detailed treatment.

Recent efforts have focused on the benefits of non-classical radiative trans-

port, where additional statistical correlations are introduced into the RTE. For

instance, in certain materials, scattering events become more (or less) likely

once a photon has traveled a certain distance from the last event. This is related

to the size and spatial arrangement of particles in the medium. Larsen and

Vasques [37] introduce an additional parameter that captures this effect.

Jakob et al. [26] propose an anisotropic radiative transfer framework derived

from scattering by oriented non-spherical particles. This enabled them to render

media made of fibers and other structured materials that break an assumption

of rotational invariance that is part of the standard derivation of the RTE.
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Both of these extensions lead to non-classical RTEs which, although more

involved, are structurally very similar to the classical equation. For simplicity,

we use the classical equation in all derivations in this thesis, but point out that a

non-classical version could be substituted if needed.

2.2.4 Energy balance equation for surfaces

Let’s now consider the surface case: given a set of surfacesM, we must specify

their response to incident illumination, which can be thought of as a boundary

condition for the RTE (2.1).

Figure 2.6: Limits of the radiance

function L from above and below

A potential issue is that by specifying such

boundary conditions, we invariably also intro-

duce discontinuities in the radiance function

L. These discontinuities are problematic when

referring to the surface radiance field, since it

will generally not be identical on both sides.

Analogous to a one-sided limit in the 1D case, we therefore distinguish

between the front and back components L+(x, ω) and L−(x, ω) as determined

by the surface normal N(x) for x ∈ M (Figure 2.6). Based on this separation, the

more intuitive incident and exitant radiance functions can then be defined as

Li(x, ω) :=


L+(x,−ω), ω · N(x) > 0

L−(x,−ω), ω · N(x) < 0
and

Lo(x, ω) :=


L+(x, ω), ω · N(x) > 0

L−(x, ω), ω · N(x) < 0

Away from surfaces (i.e. in free space), L is continuous, so L+ = L−, which

means Lo(ω) = Li(−ω) = L(ω). In other words, Li and Lo only differ by a
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Figure 2.7: At surfaces, incident and outgoing radiance are related by an integral
transformation involving the bidirectional scattering distribution function
(BSDF) and the addition of emission (if any).

direction reversal. With the help of these definitions, we can introduce the

surface energy balance equation

Lo(x, ω) =
∫

S2
fs(x, ω′→ω)Li(x, ω′)dσ⊥x (ω′) + Le(x, ω), x ∈ M. (2.2)

which equates the outgoing radiance to a weighted integral over the incident

illumination plus the emitted radiance, which has different units here than in

(2.1) as will be explained shortly. The function fs is the bidirectional scattering

distribution function (BSDF) of the surface, which characterizes the surface’s

appearance when subjected to illumination (Figure 2.7). Given illumination

reaching a point x from a direction ω′, the BSDF intuitively captures how much

of this illumination is scattered into the direction ω. A detailed definition and

classification with respect to other types of scattering functions is given by

Nicodemus [46].

Specular materials are characterized by having a “degenerate” BSDF fs that

is described by a Dirac delta distribution. For instance, a mirror reflects light

arriving from ω into only a single direction ω′ = 2N(x)〈ω, N(x)〉 −ω.

In comparison, rough materials usually have a smooth fs. BSDFs based on

microfacet theory [64, 8, 74] are a popular choice in particular—they model the

interaction of light with random surfaces composed of microscopic dielectric or

conducting facets that are oriented according to a microfacet distribution. Integra-

18



Smooth diffuse material 

Rough dielectric material

Smooth conducting material

Rough conducting material

Smooth dielectric material

Figure 2.8: A schematic overview of the main classes of BSDFs used in this thesis,
illustrated by renderings of a material test object.

tion over this distribution then leads to simple analytic expressions that describe

the expected reflection and transmission properties at a macroscopic scale. Vali-

dations against real-world measurements have shown that microfacet models

compare favorably against other families of parametric BRDF models [44]. To

render rough dielectrics and conductors, our simulations make extensive use of

the model by Walter et al. [74].

Figure 2.8 shows an overview of different classes of BSDFs used in this thesis,

along with the resulting material appearance. The polar plots to the left of the

renderings show the scattered radiance fs(ω′→ω) when the surface receives

illumination from a fixed incident direction ω′ highlighted in red. The primary

set of reflected directions is shown in blue, and the transmitted directions (if

any) are shown in green. The color of the materials (e.g. the reddish hue in the

case of copper) is not relevant for this classification.

As before, the function Le is used to model emission. Recall that Section 2.2.3
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introduced this function for interior points (i.e. away from surfaces), where it

had units of radiance per unit length. We now extend this definition to surface

points x ∈ M (e.g. black body radiation from a hot surface), where Le takes on

units of radiance. Note the different measure when compared to (2.1); dσ⊥x (ω′)

indicates integration with respect to projected solid angles.

2.3 Light source and camera models

To characterize the light sources that are part of the simulated environment,

the emission function Le must be defined. Frequently used models here range

from simple point lights that uniformly emit in all directions to measured

light sources (e.g. distributed in the popular IES lighting exchange format)

and sophisticated models for flames [45] or the sky [50, 21]. Another common

approach is to make the entire light source part of the simulation by modeling

a simple filament surrounded by a (potentially complex) glass enclosure and

mirror elements.

As mentioned earlier, a rendering algorithm creates a rendering essentially by

simulating the process of taking a photograph in a virtual setting. In addition to

a full specification of all objects and light sources in the simulated environment,

it therefore also requires knowledge about the camera. Such a camera generally

captures the illumination on a regular pixel grid so that we can think of each

pixel as a separate sensor, whose response may vary with respect to both

position and direction of the incident illumination. Assuming a linear sensor,

we can define a function We(x, ω) that models the ratio of sensor response per

unit of power arriving along a ray (x, ω). The point x is taken to lie on the

aperture of the sensor, which is part of the set of surfacesM. The function We

is referred to as the importance and is general enough to represent any kind of
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linear sensor, including perspective, orthographic, or fisheye cameras with any

kind of aperture.

The precise form of the importance function depends on the type of camera

model and is usually a simple analytic expression. As with BSDFs, We can

become “degenerate” when the response curve is limited to a discrete set of

points or directions. This is the case e.g. for pinhole cameras and orthographic

sensors, where the positional and directional dependencies reduce to Dirac

delta functions, respectively.

For a pixel j, the camera performs an associated “measurement” Ij by

computing a ray-space integral (Section 2.2.2) over the importance function

W(j)
e (x, ω) associated with camera pixel j and the incident radiance Li:

Ij =
∫
M

∫
S2

W(j)
e (x, ω)Li(x, ω)dσ⊥x (ω)dA(x)

The full set of virtual measurements Ij then constitutes the output image. This

integral can be used to define an inner product so that the above can be written

more compactly:

= 〈W(j)
e , Li〉. (2.3)

This expression is also known as the measurement integral.

Reciprocity

Physical light transport satisfies a fundamental reciprocity property, which

states that a sensor and an emitter can be exchanged without influencing the

value of a hypothetical measurement performed between them (see e.g. Dual

Photography [55] for an interesting real-world application of this property). In

light of this reciprocity, the subscript e in We highlights the symmetry between

emitters and sensors, which allows one to think of importance as an emitted
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quantity analogous to radiance. This is the basis for algorithms like bidirectional

path tracing, which simulate two simultaneous scattering processes involving

radiance and importance transport. We will not go into detail about reciprocity

and refer the reader to Veach [67], who provides an in-depth discussion of its

consequences.

2.4 Solution techniques

Simulating light transport has been a major effort in computer graphics for

over 25 years, beginning with the complementary approaches of finite-element

simulation, or radiosity [12], and ray-tracing [76]. In this section, we will briefly

review commonly used solution techniques, focusing on surface light transport

for simplicity.

Recall that to create a rendering, we must find the value of the measurement

integral (2.3) for each pixel j:

Ij = 〈W
(j)
e , Li〉.

W(j)
e is usually a simple analytic function, hence the main challenge in comput-

ing this integral is the evaluation of Li. At this point, it is not clear how to do

this at all, since we lack an explicit functional representation of Li.

It will be convenient to establish some further notation: recall thatM denotes

the set of surfaces. We can define the distance to the next surface encountered

by the ray (x, ω) ∈ R3 × S2 as

dM(x, ω) := inf {d > 0 | x + dω ∈ M}

where inf ∅ = ∞. Based on this distance, we define a ray-casting function xM:

xM(x, ω) = x + dM(x, ω)ω. (2.4)
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A very useful application of the ray-casting function involves relating the quan-

tities Li and Lo based on the preservation of radiance along rays4—specifically,

Li(x, ω) = Lo(xM(x, ω),−ω)

In other words, to find the incident radiance along a ray (x, ω), we must only

determine the nearest surface visible in this direction and evaluate its outgoing

radiance into the opposite direction. Using this, we can rewrite the measurement

integral (2.3) as

Ij =
∫
M

∫
S2

W(j)
e (x, ω)Lo(xM(x, ω),−ω)dσ⊥x (ω)dA(x) (2.5)

Furthermore, we can also eliminate Li from the energy balance equation (2.2):

Lo(x, ω) =
∫

S2
fs(x, ω′→ω)Lo(xM(x, ω′),−ω′)dσ⊥x (ω′) + Le(x, ω) (2.6)

Together with a specification of the visible surfaces M and the BSDF fs for

each x ∈ M, the above set of equations then constitutes a well-defined integral

equation problem which can be solved for Lo. Although the answer is not given

explicitly, the equations are in a form that is suitable for standard solution

techniques.

Due to the complexity of these integrals, we must unfortunately abandon all

hope of simple analytic solutions and turn to numerical integration. However,

this is made difficult by the ill-behaved nature of the integrands, which are

usually riddled with discontinuities caused by changes in visibility in the ray-

casting function xM. Practical solution methods often rely on a Neumann series

expansion of the underlying integral operators; the resulting high number of

dimensions rules out standard deterministic integration rules, whose number

4Note that for simplicity, this discussion is restricted to pure surface scattering; the addition
of volume scattering breaks this property. In Section 3, we develop a path-space integration
framework that does not suffer from this limitation.
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of function evaluations grows exponentially with dimension. Monte Carlo

methods are resilient to both of these issues and hence see significant use in

rendering. We will discuss this approach, focusing on the example of a simple

path tracer.

2.4.1 Overview of Monte Carlo methods

The introduction of Monte Carlo methods for ray tracing [7], followed by Kajiya’s

formulation of global illumination in terms of the Rendering Equation [31],

established the field of Monte Carlo global illumination. Unbiased sampling

methods, in which each pixel in the image is a random variable with an expected

value exactly equal to the solution of the Rendering Equation, started with

Kajiya’s original path tracing method and continued with bidirectional path

tracing proposed by Veach et al. [68] and Lafortune et al. [35], in which light

transport paths can be constructed partly from the light and partly from the

eye, and the Metropolis Light Transport [70] algorithm, which uses bidirectional

path tracing methods in a Markov Chain Monte Carlo framework.

We shall briefly review Monte Carlo integration using the evaluation of

the integral (2.5) as an example application. Suppose pX(x) is the probability

density of an as of yet unspecified random variable X defined with respect to

the measure dσ⊥x dA on ray-space S2×M. In the continuous case, the expected

value of a function g of X then equals

EX [g(X)] =
∫
M

∫
S2

g(x, ω)pX(x, ω)dσ⊥x (ω)dA(x)

Given this, we can define g in the following specific way

g(x, ω) :=
W(j)

e (x, ω)Lo(xM(x, ω),−ω)

pX(x, ω)
, (2.7)
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with the result that5

Ij = EX [g(X)] . (2.8)

In other words, the integral whose value we desire to know now arises as

the expectation of the random variable g(X). Given a sequence X1, X2, . . . of

independent realizations of X (i.e. random variates distributed with respect

to the probability distribution pX), we can define a statistical estimator 〈Ij〉 by

taking averages of the g(Xi):

〈Ij〉 :=
1
N

N

∑
i=1

g(Xi).

The law of large numbers then guarantees that 〈Ij〉→ Ij as N→∞. This simple

idea is the foundation of Monte Carlo integration: by randomly sampling points

in the domain and evaluating a suitably chosen function, we obtain a sequence

of numbers whose arithmetic mean converges to the correct answer.

For practical computation, it is also important to consider the variance of

this estimator: clearly, the lower the variance (and thus, the standard deviation),

the more accurate estimates of the value of the integral we will obtain. For this

estimator, it is given by

Var
[
〈Ij〉
]
=

1
N

∫
M

∫
S2

(
g(x, ω)− Ij

)2 pX(x, ω)dσ⊥x (ω)dA(x) (2.9)

Inspecting this immediately reveals the main issue with Monte Carlo integration:

variance decreases linearly as N→∞, hence the standard deviation only falls

off proportionally to
√

N, a comparatively poor convergence speed. In practice,

this means that to reduce integration errors by a factor of two, we must increase

the number of samples four-fold.

Furthermore, the variance of 〈Ij〉 is highly related to the choice of density

function pX that is used to pick sample points on the domain. To see this, we

5This assumes that g is well-defined on all ofM× S2, i.e. pX = 0 iff the numerator vanishes.
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can use the identity Var[X] = E[X2]− E[X]2, to rewrite (2.9) as

Var
[
〈Ij〉
]
=

1
N

[ ∫
M

∫
S2

(
W(j)

e (x, ω)Lo(xM(x, ω),−ω)
)2

pX(x, ω)
dσ⊥x (ω)dA(x)− I2

j

]
.

Suppose that we could choose pX to be proportional to the product of impor-

tance and outgoing radiance in the numerator of the above fraction. Due to its

definition (2.7), g then turns into the factor of proportionality, which must equal

Ij as a consequence of Equation (2.8), and the variance simplifies to

=
1
N

[
Ij

∫
M

∫
S2

W(j)
e (x, ω)Lo(xM(x, ω),−ω)dσ⊥x (ω)dA(x)︸ ︷︷ ︸

= Ij

−I2
j

]
,

in this case, we thus find that Var[〈Ij〉] = 0! But using such a pX requires already

knowing the answer to the problem, as the factor of proportionality is the value

we originally set out to compute.

When it is difficult to generate samples proportionally to a function that

resists analytic treatment, a common trade-off entails focusing on a simpler

term that can be separated out (e.g. a factor in a product expression). In our

current example, the integrand is the product of W(j)
e , a (usually) simple analytic

expression for the importance, i.e. the sensitivity profile of the camera, and Lo,

an as-of-yet unknown and potentially very involved function describing the

outgoing radiance of surfaces in the scene. Hence, in this case, we could set

pX proportional to We(j) and devise a sampling procedure that can generate

appropriately distributed random samples. Since a pixel in a camera generally

only responds to radiance arriving from a small set of positions and directions,

this will be vastly superior compared to uniform sampling on the entire domain.

A critical point that we have neglected until now is that the described method

assumes the ability to evaluate the outgoing radiance function Lo, but this is an

unknown quantity itself! Thus far, we only know that it satisfies the integral
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equation (2.6). Fortunately, there is a simple way out of this dilemma: it can be

shown that Monte Carlo integration of a product expression still works if we

replace the evaluation of the individual factors with statistically independent

estimators, as long as they have the right expected value. Hence, whenever

Lo needs to be evaluated, can we simply perform a recursive Monte Carlo

integration using an estimator 〈Lo〉 created analogously to 〈Ij〉.

This brings up another problem: since Lo is defined as the value of an

integral that itself contains Lo, this approach leads to an infinite recursion that

must eventually be stopped to yield a method that can finish in a finite amount

of time. A simple way to accomplish this is by means of an auxiliary estimator

〈Lo〉rr =


a−1 〈Lo〉, with probability a

0, with probability 1− a

where 0 < a < 1. In computer graphics, this technique is known as russian

roulette. In an implementation, this is realized by drawing a uniform variate from

a pseudorandom number source whenever a recursive Monte Carlo integration

is to be performed. When the resulting number is below an appropriately chosen

threshold a, the recursive integration is performed, and its result scaled by a−1.

Otherwise, the procedure simply substitutes zero for the nested integral’s value

and terminates the recursion. The estimator obtained in this way has the same

expected value and terminates eventually with probability one.

2.4.2 Path tracing

In practice, one more improvement is necessary to yield a viable method: the

outgoing radiance function Lo is separated into two terms corresponding to

light that has interacted with at most one surface since its emission from a light
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Figure 2.9: The incremental creation of light paths in a path tracer through recursive
sampling of directions in the domain of Equation (2.6).

source (direct illumination), and light that has undergone multiple scattering

events already (indirect illumination).

Lo = L(direct)
o + L(indirect)

o

The recursive Monte Carlo integration approach discussed earlier is then

used for the second term, while considerably more efficient specialized meth-

ods [56] are used for the direct illumination term.

Implementing the described integration scheme gives rise to a method

known as path tracing [31]. Its ability to produce photorealistic renderings,

while being simple to understand and implement, has made it an extremely

popular approach. Figure 2.9 visualizes the operation of a path tracer. By

recursively sampling points in the domain of the underlying integral equations,

a path tracer effectively builds a light path via a random walk starting at the

camera. A single random walk is shown in the figure, which entails casting

a ray associated with a pixel in the output image and searching for the first

visible intersection. A new direction is then chosen at the intersection, and the

ray-casting step repeats over and over again, until the russian roulette stopping

criterion is triggered.

At every surface intersection, the path tracer tries to create a connection to

the light source to find a complete path, along which light can flow from the
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light source to the camera. The fact that this can only succeed when there is

no occluding object between the intersection and the light source immediately

suggests the range of scenes where a path tracer can be expected to operate

efficiently: this is the case when the emitters are easily “accessible” to the

contents of the scene.

For instance, a light transport simulation of an exterior scene lit by an

overcast sky causes no problems, while an interior scene that is lit through a

slightly ajar door will likely produce a very noisy rendering. Here, the low

probability of a successful connection between objects in the scene and the light

source in the adjacent room causes the associated statistical estimator to have a

high variance, which manifests as noise in the output image. While the noise

will be reduced with increased number of samples, the slow 1/
√

N convergence

may cause this to be impractically slow.

Perhaps somewhat surprisingly, another feature of scenes that frequently

causes problems with path tracing-like algorithms is the presence of specular

materials. Although they transmit and reflect light, materials like mirrors or

dielectric boundaries effectively act like occluders during path sampling. As a

consequence, taking a scene and embedding its light sources in glass enclosures

tends to create a significantly harder rendering problem. This is unfortunate,

since such precise modeling is often highly beneficial for improved realism.

Let us briefly reinterpret the repeated recursive integrations of path tracing as

a method for sampling a single integral over a higher-dimensional domain6. Seen

from a high level, such difficult-to-reach light sources and specular materials

create small regions in this domain—that is, small sets of paths—where the

integrand takes on high values; yet, their small size and the random sampling-

based approach of path tracing mean that only few samples are likely to be

6This notion will be formalized in Chapter 3.
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(a) Path tracer, 32 samples/pixel (b) Bidirectional path tracer, 32 samples/pixel

Figure 2.10: A bidirectional path tracer finds light paths by generating partial paths
starting at the camera and light sources and connecting them in every pos-
sible way. The resulting statistical estimators tend to have lower variance
than unidirectional techniques. Modeled after a scene by Eric Veach.

placed there. To work around these issues, a number of more sophisticated

rendering techniques have been developed in the past.

2.4.3 Bidirectional path tracing

A bidirectional path tracer (BDPT) [68, 35] computes radiance estimates by

starting two separate random walks from the light sources and the camera. The

resulting subpaths are connected at every possible interaction vertex, creating

many complete paths of different lengths. This significantly more general type

of sampling procedure cannot be expressed in a recursive Monte Carlo sampling

framework like the one described in Section 2.4.1; to give the algorithm a sound

theoretical footing, Veach [67] introduced path-space integration to rendering. The

techniques proposed in this dissertation also rely on path space—we defer a full

discussion until Chapter 3, which contains a detailed derivation that generalizes

the framework of Veach with support for both surface and volume scattering.
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(a) s=0, t=3

(c) s=2, t=1

(b) s=1, t=2

(d) s=3, t=0

Figure 2.11: The four different ways in which bidirectional path tracing can create a di-
rect illumination path (matching the first row in Figure 2.12): (a) Standard
path tracing without direct illumination sampling, (b) path tracing with
direct illumination sampling, (c) particle tracing with recording of scatter-
ing events observed by the camera, (d) particle tracing with recording of
particles that hit the camera.

The key idea of path space is a transformation that expresses the measure-

ment integral (2.3) as an integral over paths. With this re-formulation, instead

of sampling rays and directions, the problem now becomes selecting paths at

random from the set of all possible paths. This setting provides a fertile ground

for the development of a wide range of different path sampling strategies.

BDPT’s approach of exhaustively connecting two subpaths supplies it with

an entire family of connection strategies so that a path containing n scattering

events can now be created in n + 3 different ways. Figure 2.11 illustrates how

the same direct illumination path (i.e. n = 1) can be produced in four different

ways. Here, s and t indicate the number of sampling steps from the camera and

light source, respectively7.

7Sampling a position on the camera aperture or light source is also counted as a sampling
step, hence the numbers may seem larger than they should be.
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s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

Figure 2.12: The individual sampling strategies that comprise the BDPT rendering
shown earlier, but without multiple importance sampling. Each row corre-
sponds to light paths of a certain length. Note how almost every sampling
strategy has deficiencies of some kind.

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

Figure 2.13: The same sampling strategies, but now weighted using multiple impor-
tance sampling—effectively “turning off” each strategy where it does not
perform well. The final result is computed by summing all of these images.
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One way to think of about these different sampling strategies is that each

one effectively acts like a change of variables: for instance, the four direct

illumination strategies correspond to four different reparameterizations of the

same integral with the goal of making it more amenable to numerical integration.

In practice, each of the strategies is usually successful at dealing with certain

types of light paths, while being an exceptionally poor choice for others.

A key insight by Veach [69] is that it is possible to create linear combinations

of the strategies in a way that, roughly speaking, locally re-weights them based

on their predicted utility. Using this approach, known as multiple importance

sampling (MIS), BDPT is able to rely on each strategy in regions of the domain

where it is good, discarding it elsewhere (Figures 2.12 and 2.13).

Yet, BDPT cannot overcome all problems of path tracing. This becomes

apparent when rendering difficult scenes that, for instance, contain the class of

specular-diffuse-specular paths mentioned in Chapter 1. In such situations, all

of the constituent sampling strategies tend to perform poorly, and hence it is not

possible to create a superior strategy by means of re-weighting. Nonetheless,

bidirectional path tracing is often a valuable improvement over standard path

tracing; we use it as a generator of light paths to seed the rendering method

proposed in this dissertation.

Similar to BDPT, our new method also makes use of many different strategies

for finding light paths bidirectionally. As we shall see later, this ability arises

quite naturally within the framework of Metropolis Light Transport, removing

the need for multiple importance sampling in the main part of the algorithm.
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2.4.4 Two-pass methods

Various two-pass methods have been proposed for rendering difficult classes

of light paths. They operate by precomputing an approximate representation

of the scene illumination, for instance by solving a linear system [12, 58], or by

sending out energy from the light sources in the form of photons [57, 28, 73] or

virtual point lights [33] that are traced through the scene and stored in a simple

list or spatial data structure. A second pass then renders the image using ray

tracing, making use of the precomputed data via hierarchical clustering [72, 71],

density estimation [29, 27, 14], or other kinds of queries.

Photon mapping and other two-pass methods are characterized by storing an

approximate representation of some part of the illumination in the scene, which

requires assumptions about the smoothness of the illumination distribution. On

one hand, this enables rendering of some modes of transport that are difficult

for unbiased methods, since the exact paths by which light travels do not need

to be found; separate paths from the eye and light that end at nearby points

suffice under assumptions of smoothness. Much like relaxation techniques for

discrete search problems, this “relaxes” the original integration problem so that

it becomes easier to handle. However, this inherently leads to smoothing errors

in images: the results are biased, in the Monte Carlo sense.

Glossy materials also limit the effectiveness of two-pass methods and remain

challenging even with the smoothing they introduce. The reason for this

can be seen when examining the behavior of these methods with respect to

different materials. For a fixed outgoing direction, a diffuse material responds

equally to illumination arriving from all directions, hence it suffices to use a

radiance representation that only considers positions. Glossy materials, on the

other hand, only reflect light arriving from a small cone of directions into the
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given outgoing direction. To render such a material effectively, the underlying

radiance representation must therefore sample position-direction space, which

increases its dimension from 2D to 4D. Some photon mapping variants avoid

this by computing radiance on glossy materials using a recursive Monte Carlo

integration, but this means that the resulting methods increasingly resemble

path tracing as the number of glossy surfaces in the input scene grows.

Many-light algorithms [33, 72, 18] convert the steady-state illumination of a

scene into a large set of point light sources (e.g. thousands to millions). Indirect

illumination is already part of this representation, hence the main rendering step

only has to account for direct illumination light paths. Furthermore, clustering

can be used to significantly reduce the number of light sources that must be dealt

with. To avoid distracting image artifacts, the contribution of each individual

light source is usually limited to a certain maximum amount, which is referred

to as clamping.

These steps limit the types of materials that can be rendered well in practice,

and the clamping of the lights introduces statistical bias. As is the case with

photon mapping, many-light algorithms have difficulty rendering interreflection

between glossy materials.

The focus of this dissertation is the solution of the original non-relaxed

integration problem, hence we do not consider two-pass methods.

2.4.5 Overview of Markov Chain Monte Carlo

So far, we have discussed several different approaches for constructing light

paths—either by building them incrementally from the camera or, bidirectionally,

from the light sources and the camera, potentially by means of an intermediate

photon data structure. What these methods all have in common is that, in one
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form or another, a part of them relies on the generation of random samples.

Given a probability distribution defined over the domain of an integrand, they

generate statistically independent random samples according to this distribution

and render the output image by evaluating the integrand at the sample loca-

tions. Rendering would be a much simpler problem if it was possible to let

this sampling probability be exactly proportional to the integrand, but this is

prevented by the complexity of the latter so that severe compromises must be

made in practice.

Yet, Markov Chain Monte Carlo (MCMC) is a method that promises exactly

this: to generate samples proportional to an arbitrary probability distribution

that may be impractical to sample using any other technique. It is able to

accomplish this by giving up the property of independence: samples obtained

from a MCMC method are statistically correlated, which introduces a different set

of tradeoffs that we will review in this section. We begin by looking at MCMC

in a general setting; afterwards, we focus on its application to rendering. Our

introduction follows Liu [38] and Pharr [48].

A Markov chain is a sequence of random variables X1, X2, . . . in a state space

in which the probability of a state appearing at a given position in the sequence

depends only on the previous state. In a homogeneous Markov chain, the rule

that governs transitions between states is furthermore invariant over time8 so

that we can specify a transition probability

Pr (Xi = xi | Xi−1 = xi−1, . . . , X1 = x1)=Pr (Xi = xi | Xi−1 = xi−1)=: P(xi, xi−1)

that only depends on the realizations xi and xi−1, but not on i. The type of

coupling between states in a Markov chain ensures that its behavior can be

predicted based on the observation of just one of its states—additional history

8Here, time refers to the discrete time of a stochastic process rather than physical time.
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does not improve such a prediction, a property referred to as memorylessness.

This term can be slightly misleading, because the correlation between adjacent

states does in fact create a form of short-term memory. We will see later that

this is one the chief advantages of Metropolis-type methods.

When the state space of a Markov chain is finite, and the chain is able to

pass from any state in the domain to another using a finite expected number of

steps, and if the length of this journey is in a sense “irregular” (i.e. aperiodic),

it is referred to as ergodic and irreducible. In this case, it can be shown that the

distribution of states in the sequence x1, x2, . . . converges to a unique stationary

distribution regardless of the initial state x1. In the continuous case, the charac-

terization of this convergence is more involved. We will not go into details, as

all of the Markov chains considered in this thesis trivially satisfy ergodicity and

irreducibility by being able to directly reach any state in the domain starting

from any position, using a single transition.

The basic idea of MCMC, first proposed by Metropolis et al. [40], is to define

a Markov chain that has a stationary distribution proportional to the function to

be integrated, meaning that if the chain is run for a long time, the distribution

of states it visits will be proportional to the desired distribution. Surprisingly,

the only requirement for this is the ability to evaluate the target distribution;

in particular, we need not be able to integrate or normalize it, or to compute

the inverse of its cumulative distribution function—all steps which cause severe

difficulty in traditional sampling approaches.

Defining a Markov chain amounts to defining a transition rule: a process

for selecting a new state x+ randomly, in a way that depends on the current

state x. Metropolis et al. provided a way to take a transition rule that may not

produce the desired stationary distribution π and turn it into one that does.
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Given a method for sampling a new state x′ from a proposal distribution T(x, x′),

the Metropolis transition rule operates in two steps:

1. Choose x′ according to the probability distribution T(x, x′).

2. x+ =


x′ with probability min(1, π(x′)/π(x))

x otherwise

In step 1 we say x′ is proposed as the next state, and in step 2 it is either accepted

and becomes the next state, or it is rejected and the next state repeats the previous

one. The probability min(1, π(x′)/π(x)) is known as the acceptance probability.

The original Metropolis algorithm only works when T(x, x′) = T(x′, x). In

1970, Hastings [17] proposed a new acceptance probability:

r(x, x′) = min
{

1,
π(x′)T(x′, x)
π(x)T(x, x′)

}
(2.10)

which relaxes the symmetry restriction to one of symmetric support: T(x, x′)

must be nonzero exactly when T(x′, x) is nonzero. The Metropolis–Hastings

algorithm is the starting point for MCMC rendering methods.

One noteworthy aspect of (2.10) is that the desired stationary distribution π

occurs both in the denominator and numerator, which means that normalizing

constants can be neglected without affecting the behavior of the Markov chain.

This is important in many fields, where this constant may be unknown. The

same holds true for T: any factors that are shared between the forward transition

probability T(x, x′) and the reverse probability T(x′, x) cancel. This useful in the

context of rendering because it means that certain factors of T don’t have to be

computed, thus reducing the necessary amount of computation per transition.

The most common application of samples produced by MCMC methods is

to estimate the expectation of a function g of X, where X is distributed according
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to the target distribution π, i.e.

Eπ [g(X)] =
∫

Ω
g(x)π(x)dx

≈ 1
N

N

∑
i=1

g(xi) (N ∈N).

It is usually also necessary to discard an initial part of the sequence so that the

bias introduced by the choice of x1 becomes negligible; this is referred to as

the burn-in period. In many disciplines, the length of this burn-in period is an

important parameter. For instance, when simulating the state of atoms in a high-

dimensional molecular model, the starting position might be a rather unrealistic

configuration of atoms, where a long sequence of transitions is necessary to

move into a region of the state space where π takes on non-negligible positive

values. In computer graphics, this is a much smaller concern, because the

Markov chain can be seeded using a standard unbiased sampling technique.

We use the bidirectional path tracing algorithm for this purpose and hence do

not require a burn-in period9.

The most important aspect of a Metropolis-type method is the choice of a

suitable proposal distribution. Here, we seek to balance two conflicting goals:

on one hand, we desire an algorithm that takes small steps so that it can easily

explore small regions of the state space where π takes on large values. On

the other hand, we wish that a subsequence of the Markov chain xi, . . . , xi+k

captures a “representative” subset of the relevant parts of the state space, which

means that it must move around quickly enough to do so (this is referred to

as the mixing ratio of the chain). This matter is complicated by the fact that

overly large steps tend to leave local maxima of π, thus causing them to be

rejected immediately. Consequently, a chain taking large steps can produce

long repetitions of the same state, which may effectively cause it to have a worse
9The details of this seeding process are discussed in Veach’s PhD thesis [67], Section 11.3.1.
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mixing ratio than that of a chain taking smaller steps.

Figure 2.14 visualizes these tradeoffs using a simple example in which the

Metropolis-Hasting algorithm is used to draw samples from a linear combina-

tion of one-dimensional normal distributions. We show the behavior of three

different types of transitions rules (also referred to as mutators) by constructing

histograms over the first 1000 visited states, always starting the chain at x1 = 0.5.

Ideally, the histogram should be in good agreement with the density function.

The first mutator is given by

Mutate1(x) := generate a uniform sample on [0, 1]

This is also known as an independence sampler, since the proposals are not

correlated with the current state. Such an independence sampler is often needed

for a MCMC algorithm to work properly, since it ensures that the underlying

Markov chain satisfies the irreducibility and ergodicity properties discussed

earlier. However, it does not lead to a good sampling method when used on

its own, as can be seen in Figure 2.14 (b): due to many rejected proposals, the

histogram is still fairly unconverged, and the estimated probability mass in the

modes is considerably off. The second mutator is defined as

Mutate2(x) := generate a uniform sample on [x− 0.05, x + 0.05]

Veach refers to such a mutator as a perturbation, since it only makes minute

changes to the current state. The histogram of Mutate2 shown in Figure 2.14 (b)

reveals that this strategy produced a smooth histogram that is a nonetheless

a very poor approximation of the underlying target density. Due to the small

steps taken and the low acceptance probability of proposals in regions where the

target density is close to zero, this chain was effectively “stuck” in the middle
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(e) mutate3 run for 10 000 iterations

Figure 2.14: Using the Metropolis-Hastings algorithm to generate samples from a
simple 1D function

.
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mode. The last mutator is defined as

Mutate3(x) := use Mutate1 or Mutate2 with equal probability

This finally leads to a good match in Figure 2.14 (c). Increasing the number

of samples to 10000 in Figure 2.14 (d) improves the histogram further. Due

to the superior performance of this combination, Metropolis-type rendering

algorithms usually combine independent large-scale mutations and small-scale

perturbations in much the same way.

When the domain is euclidean (e.g. Ω = Rn for some n ∈N), a straightfor-

ward and commonly used proposal density is to use spherical symmetric nor-

mally distributed steps, i.e. T(x, x′) = fN(x− x′), where fN is the n-dimensional

density function of a normal distribution having mean 0 and variance σ2. For a

simple setup based on such proposals, Roberts and Gilks [53] determined that

σ2 should be set so that an asymptotic acceptance rate of 0.234 is maintained,

which they found to maximize the statistical efficiency. While this result does

not extend to general state spaces, it can serve as a good rule of thumb and

mental warning note that acceptance rates too close to 100% can be detrimental,

since the associated chain will likely not explore the space very well.

2.4.6 Metropolis Light Transport

The Metropolis Light Transport algorithm mentioned above introduced the tools

of MCMC to rendering. In the rendering context, the state space is the space

of all paths through the scene, points in the space are paths, and the desired

probability distribution over paths is proportional to their contribution to the

rendered image (i.e. the amount of illumination they carry to the camera). The

final image is the projection of the path distribution into the image plane.
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Following the notation of Veach, we indicate variables describing light paths

using a bar marker, as in x̄. The target distribution π is equal to the contribution

weighting function f of the measurement integral, which is covered in detail

in Chapter 3. For now, f can be thought of as a black box that measures the

differential amount of light traveling along a path. A simple pseudocode version

of the algorithm looks as follows:

Metropolis-Light-Transport

(
)

1 x̄1 = Seed path created using BDPT

2 for i = 2 to N

3 x̄′i = Mutate(x̄i−1)

4 x̄i =


x′i, with probability min

{
1, f (x̄′i)T(x̄

′
i , x̄i−1)

f (x̄i−1)T(x̄i−1, x̄′i)

}
xi−1, otherwise

5 Increase the luminance of the image pixel associated with x̄i

6 Re-scale the image

We now describe each step in more detail:

Seed path generation (line 1): MLT is normally seeded with a path obtained

from another rendering method. As mentioned earlier, the sampling scheme in

unbiased techniques like plain path tracing and BDPT is usually not in perfect

agreement with the underlying function to be integrated. As a consequence,

each path must be assigned a sampling weight to account for the ratio between

the integrand f and the actual sampling density.

To seed the MLT algorithm in a practical way that eliminates the need for a

burn-in phase, Veach proposed using BDPT to generate a large number of seed

path candidates along with sampling weights. Following this, x1 is randomly

chosen from the candidates with a probability that is proportional to their
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weights. When rendering on a machine with multiple cores, one candidate

is chosen for each core. In this case, the Markov chains are run in parallel,

after which the final output image is created by averaging the output of the

individual cores.

Mutations and Perturbations (line 3): At the center of an MCMC rendering

algorithm is an implementation of a transition rule, and any rule with symmetric

support is admissible. But to avoid very low acceptance probabilities, which lead

to poor performance, it is desirable for the transition probability to approximate

the contribution: that is, paths with more light flowing along them should be

chosen more often. Veach’s [70] transition rule is based on a set of mutations

that change the structure of the path and perturbations that move the vertices by

small distances while preserving the structure, both using the building blocks

of bidirectional path tracing to sample paths. One of the following types of

operations is randomly selected in each iteration:

(i) Bidirectional mutation: This mutation replaces a segment of an existing

path with a newly generated segment (possibly of different length) drawn

from a bidirectional-path-tracing-like sampling strategy. This essential

mutation rule guarantees ergodicity and thus forms the backbone of the

MLT algorithm. Due to the large-scale modifications of its proposals, many

of them are ultimately rejected, and the bidirectional mutation therefore

relies on the presence of additional perturbations to create a practical

rendering technique.

(ii) Lens subpath mutation: The lens subpath mutation replaces a lens subpath

(the path segment starting at the camera and reaching until the first non-

specular vertex) with a different lens subpath that does not need to be
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(a) Lens perturbation (b) Caustic perturbation

(c) Multi-chain perturbation

Figure 2.15: An overview of the three different types of perturbations supported in
Metropolis Light Transport.

similar to the preceding one. This transition rule thus makes large-scale

changes to the end of a path.

(iii) Lens perturbation: This transition rule shown in Figure 2.15 (a) perturbs

the outgoing direction at the camera and propagates the resulting path

until the first non-specular material is encountered. It then attempts to

create a connection to the (unchanged) remainder of the path. If the

resulting path segment has a different length or path configuration (i.e. if the

sequence of specular/nonspecular vertices does not match), it is rejected

immediately. This conservative behavior is shared by all perturbations.

(iv) Caustic perturbation: The caustic perturbation works just like the lens

perturbation, except that it proceeds in the other direction, starting from

the light source.
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(v) Multi-chain perturbation: This transition rule is used when there are

several chains of specular interactions, as seen in the swimming pool

example in Figure 2.15 (c). After an initial lens perturbation, a cascade of

additional perturbations is performed until a connection to the remainder

of the path can finally be established. Depending on the path type, the

entire path may be changed by this.

The random selection of a mutation or perturbation in each iteration causes the

underlying Markov chain transition matrix to turn into a linear combination of

several different Metropolis-Hastings type transition matrices. This leads to a

straightforward computer implementation but, strictly speaking, does not fit

within the MCMC framework discussed so far.

To adhere to the framework, we would need to construct a single mutation

that subsumes the effects of all desired path modifications, while accounting for

potential overlaps between them when computing transition probabilities (for

instance, the lens perturbation and bidirectional mutation might propose the

same modification with different probabilities).

Tierney [63] showed that under certain conditions, both of these approaches

are acceptable: in particular, a MCMC method that only computes transition

probabilities with respect to the currently chosen mutation still has the correct

stationary distribution, as long as each one of the mutators preserves it. Hence,

we rely on this simpler variant.

Acceptance/Rejection (line 4): The acceptance/rejection step in practice closely

follows the given pseudocode. Unchanged path segments cause identical terms

to appear in the nominator and denominator of the acceptance probability,

which do not need to be computed in an implementation—this can considerably

accelerate mutations involving long paths.
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Recording the path in the output image (line 5): In each iteration, MLT

determines the pixel associated with the current path and increases its intensity

by a fixed amount.

Re-scaling the output image (line 6): One issue with the algorithm outlined

so far is that it essentially creates a histogram of the lighting distribution in

image space. Image luminances are only recovered in a relative sense: MLT can

for instance determine that a certain pixel is approximately twice as bright as

another one, but an absolute scale factor is still needed to turn it into a valid

rendering10.

This scale factor is usually found by computing the average image luminance

using a standard unbiased sampling technique like unidirectional or bidirec-

tional path tracing. This computation can be conveniently integrated into the

seeding phase (line 1) at almost no extra cost.

Additional details: So far, we have neglected to explain how color information

is handled in the rendering process. Commonly, the MLT target density is chosen

as the luminance of the spectral or RGB-valued contribution function f so that

paths are sampled proportional to the luminance they carry to the camera. To

retain color information, step 5 is modified so that it adds the value of f divided

by its luminance to the corresponding pixel, rather than simply incrementing

its value.
10 Some tonemapping techniques are invariant to scaling of the input and hence do not

require this step.
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2.4.7 Other MCMC rendering methods

A considerably simpler MLT variant was later proposed by Kelemen et al. [32],

which we will refer to as Primary Sample Space MLT (PSSMLT). Like Veach’s

MLT, this method explores the space of light paths, searching with preference

for those that carry a significant amount of energy from an emitter to the sensor.

The main difference is that PSSMLT does this exploration by “piggybacking” on

another rendering technique and manipulating the random number stream that

drives it, whereas MLT operates directly on light paths.

The main insight of Kelemen et al.’s approach is that unbiased sampling

strategies like uni- or bidirectional path tracing can be interpreted as a combina-

tion of a uniformly distributed random number generator on the interval [0, 1]

and a deterministic mapping from a sequence of these random numbers to a

path in P . If we define Ω :=“[0, 1]∞” with a slight abuse of notation to be the

infinite-dimensional space containing all possible realizations of a sequence of

uniform variates and let Φ : Ω→P denote the aforementioned mapping, where

wj is the associated sampling weight for pixel j, then this algorithm computes

the same answer Ij using an integral of the following form

Ij :=
∫

Ω
wj(Φ(x))dx (2.11)

using mutation and perturbation strategies that operate directly on the primary

sample space Ω (Figure 2.16). Due to path termination criteria such as russian

roulette, only a finite (but random) number of uniform variates is required

in practice, which makes the approach feasible. This algorithm has several

desirable properties: first, due to the simple structure of this space, a symmetric

proposal density can be used, which removes the need to compute transition

probabilities11 when computing acceptance probabilities. Another important

11This can be a rather difficult part of mutations on path space.
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(b) Path space view(a) Primary sample space view

Figure 2.16: Primary Sample Space MLT performs mutations in an abstract random
number space. A deterministic mapping Φ induces corresponding muta-
tions in path space.

aspect of the method lies in the generality of Equation (2.11). The function Φ is

a black-box mapping that could denote virtually any Monte Carlo rendering

algorithm, including path tracing, particle tracing, and bidirectional path tracing.

Finally, perturbations within primary sample space tend to interact nicely with

the implemented importance sampling strategies in a way that gives them the

right “scale”. For instance, when perturbing the coordinates that are used to

sample the outgoing direction on a surface, the magnitude of the direction

change is generally related to how glossy this material is.

The main disadvantage is the considerable loss of flexibility when compared

to the original MLT algorithm. Because of the black-box nature of the mapping

Φ, the behavior of the different dimensions of Ω can be difficult to predict: for

instance, a small change to the first coordinate may cause a ripple change that

causes large-scale modifications to later parts of a path. A useful feature of the

MLT scheme by Veach is that it can construct a path from one direction (e.g.

from the camera to the light source) and later perturb it in the other direction. It

is also possible to expand or contract subpaths by inserting or removing vertices.
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Such operations are not available when using the simpler primary sample space.

In the field of applied mathematics, Doucet et al. [9] proposed a MCMC algo-

rithm for solving general Fredholm and Volterra equations of the second kind.

When translating their method into the context of the measurement integral

(2.3), one arrives at a method that resembles the MLT algorithm and supports

perturbations in addition to path contractions and expansions. Because it only

modifies one vertex at a time, the resulting Markov chain is not guaranteed to

converge to the correct stationary distribution, which Veach points out in [67].

Considerable research activity has extended Metropolis light transport in

various ways. Pauly et al. [47] proposed a perturbation rule for rendering

participating media with single scattering. Other projects include Metropolis

Instant Radiosity [54], Population Monte Carlo rendering [36], and Replica

Exchange light transport [34]. Recently, two groups [3, 15] have combined the

transition rule of Kelemen et al. with photon mapping to obtain robust methods

based on density estimation.

However, to generate proposals, all of these algorithms ultimately rely on

local path sampling strategies (i.e. path tracing). Specifically, they choose

the next interaction vertex along a light path by sampling from a directional

distribution associated with the current vertex, followed by an intersection

search. In this dissertation, we introduce a new kind of transition rule with

different properties.

The original MLT algorithm and subsequent variants all render an image

by running a Markov chain for a long (e.g. > 106) sequence of steps, and

they guarantee ergodicity using a transition rule that can generate any path

in the domain with some probability. These methods can in practice suffer

from sufficient control over the distribution of samples in image space, which
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slows down convergence. In principle, the lens subpath mutation attempts to

spread out samples in image space, but its large-scale nature means that these

mutations are likely to be rejected.

The Energy Redistribution path tracing (ERPT) method by Cline et al. [6],

which is readily adapted to work with our method, is an interesting departure

from MLT. It draws on the property that the Metropolis-Hastings algorithm

preserves the stationary distribution of samples even if the underlying transition

rule is not ergodic (e.g. when it cannot reach certain parts of path space). This

requires that the original samples that are used to seed the Markov chain already

have the right distribution.

ERPT then works as follows: in a first step, it samples a large set of paths via

standard path tracing. Due to the limitations of unbiased sampling, these paths

are not distributed proportionally to the target distribution, hence each one is

assigned a sampling weight by the path tracer—however, together with those

weights, they can be thought of as being drawn from the correct distribution.

Following this, ERPT runs Markov chains for short bursts (≈ 103 steps) starting

at each sample. It uses the same perturbations as the original MLT algorithm,

namely the lens, caustic, and multi-chain perturbation. The relaxation of the

ergodicity requirement makes it possible to dispense with the bidirectional and

lens subpath mutation, creating a method that explores paths in a very local

fashion. The main advantage of ERPT is that it enables the use of an initial set

of path samples that is carefully chosen to have a good distribution, e.g. one

path per pixel.
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CHAPTER 3

PATH SPACE FOR VOLUMES AND SURFACES

One of the main motivations for using path space is that it provides an explicit

expression for the value of a measurement as an integral over paths, as opposed

to the unwieldy recursive integration encountered in Section 2.4.1. The explicit

form allows for considerable freedom in how these paths are found—essentially

any technique for randomly choosing paths can be turned into a workable

rendering algorithm that computes the right answer given enough time.

Having discussed the underlying energy balance equations, we will now

show how they can be used as the starting point for a derivation of a path-space

framework suitable for the construction of advanced rendering algorithms.

Although each of these steps is in principle well-understood, there currently

exists no detailed derivation that accounts for the effects of both surfaces and

volumes (the closest being work by Pauly et al. [47], which only supplies

definitions). For completeness, we therefore provide one here. Note that we

postpone all treatment of specularity to Chapter 4 and focus purely on the

non-specular case for now. Readers who are familiar with path space and

interested in the main results of this thesis may consider skipping over this

chapter.

3.1 Integral form of the radiative transfer equation

As a prerequisite, we require a full specification of the underlying conservation

laws of light transport in integral equation form. The surface equation (2.2)

already satisfies this condition and can be used as-is.

Since the RTE is an integro-differential equation, we begin by converting it
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into a pure integral form. As an intermediate result, we will obtain an operator-

based description of surface and volume light transport similar in style to

the frameworks presented by Arvo [1] and Veach [67], which we then use to

derive the path-space measurement integral. We roughly follow the approach of

Chapter 4 in Eric Veach’s Ph.D. thesis [67] and refer to this work for a detailed

discussion of the notation used.

Definitions: We shall make use of the following notation to express integra-

tion along ray segments

∫ y

x
f (z)dz :=

∫ ‖x−y‖

0
f (x + t−→xy)dt, where −→xy :=

y− x
‖y− x‖ .

and ∫ xM(x,ω)

x
f (z)dz :=

∫ dM(x,ω)

0
f (x + tω)dt.

where xM was defined in (2.4). When dealing with rays that do not intersect

any surfaces (dM(x, ω) = ∞), we consider the ray-casting operator xM(x, ω) to

return points at infinity.

Recall the radiative transfer equation (2.1):

(ω · ∇) L(x, ω) + σt(x) L(x, ω) =

σs(x)
∫

S2
fp(x, ω′→ω) L(x, ω′)dσx(ω

′) + Le(x, ω), x ∈ Ω◦,

where Ω◦ was the interior of the domain. Restricted to a line of direction ω

parameterized by s ∈ R, it can be rewritten as a one-dimensional ordinary

differential equation of the form

L′(s) + σt(s)L(s) = Z(s)

where Z(s) represents the emitted and in-scattered radiance at s. Given an
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arbitrary initial condition at s = 0, this ODE has the solution

L(s) = exp
(
−
∫ s

0
σt(r)dr

) [
L(0) +

∫ s

0
exp

(∫ t

0
σt(r)dr

)
Z(t)dt

]
= exp

(
−
∫ s

0
σt(r)dr

)
L(0) +

∫ s

0
exp

(
−
∫ s

t
σt(r)dr

)
Z(t)dt (3.1)

where the first term corresponds to attenuated radiance from the surface at

s = 0 and the second term accounts for in-scattered radiance.

In this solution, the parameterization and boundary condition at s = 0 were

chosen arbitrarily. In general, the boundary condition will be specified by the

nearest surface visible along the ray (x,−ω). To formalize this, we will first

define the reduced surface radiance at (x, ω) as

Lred(x, ω) :=


Lo(xM(x,−ω), ω) τ(xM(x,−ω)↔ x), dM(x,−ω) < ∞

0, otherwise

where

τ(x↔ y) := exp
(
−
∫ y

x
σt (z) dz

)
and Lo represents the surface radiance scattered into direction ω. By changing to

a suitable parameterization and substituting the appropriate expressions for L(0)

and Z(t) into Equation (3.1), the first term becomes the reduced surface radiance

and we arrive at the integral form of the radiative transfer equation (Figure 3.1):

L(x, ω) = Lred(x, ω) +
∫ dM(x,−ω)

0
τ(x↔ x− tω)

(
σs(x− tω)∫

S2
fp(x− tω, ω′→ω)L(x− tω, ω′)dσx−tω(ω

′) + Le(x− tω, ω)

)
dt

which can be written more compactly using the notation introduced earlier:

L(x, ω) = Lred(x, ω) +∫ xM(x,−ω)

x
τ(x↔ y)

(
σs(y)

∫
S2

fp(y, ω′→ω)L(y, ω′)dσy(ω
′) +Le(y, ω)

)
dy. (3.2)
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Reduced surface radiance In-scattered radiance

Figure 3.1: The integral form of the RTE describes radiance at (x, ω) as the sum of the
reduced surface radiance and an integral over in-scattered radiance.

Contrasting this equation with the integral equation for surfaces (2.2), one

conspicuous difference is that the surface equation is expressed in terms of

the incident and exitant radiance functions Li and Lo, whereas 3.2 is given in

terms of L. Away from surfaces, the distinction between Li and Lo is technically

not necessary (involving only a change of direction, see Section 2.2.4) but we

introduce it here for the purpose of a more uniform notation. Expressed in

terms of Li and Lo, the integral form of the RTE (3.2) is given by

Lo(x, ω) = Lred(x, ω) +∫ xM(x,−ω)

x
τ(x↔ y)

(
σs(y)

∫
S2

fp(y,−ω′→ω)Li(y, ω′)dσy + Le(y, ω)

)
dy. (3.3)

For completeness, we repeat the associated surface boundary condition (2.2):

Lo(x, ω) =
∫

S2
fs(x, ω′→ω)Li(x, ω′)dσ⊥x (ω′) + Le(x, ω), x ∈ M.

Note the negated ω′ term in the spherical integral (3.3), which has a positive cor-

respondence in (2.2). This discrepancy is simply due to the different parameter

conventions of surface and volume scattering models.1

1As a somewhat unfortunate consequence of notations in different fields, in volume scattering
models, the incident direction argument points towards the scattering location, whereas it points
away in the surface case.
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G K

Figure 3.2: Illustration of the effects of G and K operators at points that lie on a surface.

3.2 Operator notation

Volumetric light transport can be seen as the alternation of two steps: scattering

on a surface or within the medium, followed by propagation and attenuation.

Analogous to [67] and [1], these two steps can be formulated as linear operators

defined on the space of radiance functions. The goal of this section is to partition

Equations (2.2) and (3.3) so that they can be expressed in this manner. We define

the scattering operator K as one of the in-scattering integrals in Equations (2.2)

or (3.3) dependent on whether or not x ∈ M:

(Kh)(x, ω) :=


∫

S2
fs(x, ω′→ω) h(x, ω′)dσ⊥x (ω′), x ∈ M

σs(x)
∫

S2
fp(x,−ω′→ω) h(x, ω′)dσx(ω

′), otherwise
(3.4)

On surfaces, K turns incident radiance into outgoing radiance. On the interior

of the domain, it turns incident radiance into outgoing radiance per unit length.

In comparison, the transport operator G has a single definition on the whole

domain. Its role is to transform outgoing radiance per unit length from the

volume and outgoing radiance from surfaces into incident radiance.

(Gh)(x, ω) :=
∫ xM(x,ω)

x
τ(x↔ y) h(y,−ω)dy

+ τ(x↔ xM(x, ω)) h(xM(x, ω),−ω) (3.5)

This leads to interesting differences in comparison to previous work: to match
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G K

Figure 3.3: Illustration of the effects of G and K operators at points that lie in a volume.

equations (2.2) and (3.3), we arrive at an equilibrium equation of the form

Li = G (KLi + Le) (3.6)

whereas Lo = Le + KGLo was used by [67]. The differences arise since volume

light transport forces us to deal with both radiance and radiance per unit length.

To express the equilibrium condition purely in terms of radiance, the order of

the G and K operators must be reversed. Assuming invertibility, the solution

operator S can now be found:

Li = G (KLi + Le)

⇔ (I−GK) Li = GLe

⇔ Li = (I−GK)−1 G︸ ︷︷ ︸
=: S

Le.

When the following Neumann series converges in operator norm, the solution

operator can also be expressed as

S =
∞

∑
k=0

(GK)k G. (3.7)
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3.3 Unified path integral formulation

Having defined the necessary operators, we can now proceed to find the as-

sociated path integral formulation. Note that in the following, we will often

switch between parameterizing functions in terms of directions and positions.

The arrow direction indicates the flow of light, which leads to the following

notational conventions:

Le(x→y) := Le(x,−→xy)

We(x← y) := We(x,−→xy)

fs(x→y→z) := fs(y,−→yx,−→yz)

fp(x→y→z) := fp(y,−→xy,−→yz)

(Gh)(x→y) := (Gh)(x,−→xy)

Change of variables

When dealing with light transport on surfaces, it is often convenient to switch

between integration over a sphere and integration over all surfaces of the scene,

e.g. ∫
S2

f (xM(x, ω))dσ⊥x (ω) =
∫
M

f (y) G̃surf(x↔ y)dA(y).

This change of variables involves the geometric term for surfaces [49]

G̃surf(x↔ y) = V(x↔ y) ·
∣∣cos θx cos θy

∣∣
‖x− y‖2

where θx and θy denote the angles that −→xy makes with the surface normals N(x)

and N(y), respectively, and V is a visibility function defined as

V(x↔ y) :=


1, if {αx + (1− α)y | α ∈ (0, 1)} ∩M = ∅

0, otherwise
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In the volume setting, a similar change of variables is possible: we consider a

volume integral over rays radially emanating from a point x. Fubini’s theorem

and some manipulation leads to

∫
S2

∫ xM(x,ω)

x
f (y)dy dω

=
∫

S2

∫ ∞

0
f (x + rω)V(x↔ x + rω)dr dω

=
∫ ∞

0

1
r2

∫
S2(x,r)

f (y)V(x↔ y)dA(y)dt

=
∫

Ω

V(x↔ y)
‖x− y‖2 f (y)dV(y).

To handle all possible combinations of volume and surface endpoints, we define

the basic geometry term as follows:

G̃(x↔ y) := V(x↔ y) ·
Dx
(−→xy

)
Dy
(−→yx

)
‖x− y‖2

where

Da(ω) :=


|N(a) ·ω| , a ∈ M

1, otherwise

3.4 Path space measurement integral

Based on the generalized operators G and K, we can proceed to find a path

integral formulation of light transport similar to what is done in Chapter 8 of

Eric Veach’s thesis [67].

We begin by considering a measurement Ij, which is defined as the inner

product of the importance W(j)
e emitted by sensor j and the incident radiance Li:

Ij = 〈W
(j)
e , Li〉

=
∫
M

∫
S2

W(j)
e (x, ω)Li(x, ω)dσ⊥x (ω)dA(x). (3.8)
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For simplicity, we restrict the ray origins to the boundary, hence volumetric

sensors are not supported2.

The goal of the path space approach is to express the measurement integral

(3.8) over the set of transport paths P

Ij =
∫
P

f j(x̄)dµ(x̄),

where µ is a measure on P , and f j is a contribution weighting function specific

to the measurement.

To render the above precise, let us define the path space P as the union of all

fixed-length paths formed by concatenating vertices fromM and Ω◦ according

to a configuration vector c ∈ {0, 1}k, i.e.

P :=
∞⋃

k=1

⋃
c∈{0,1}k

P c
k (3.9)

where Pc
k is defined using a Cartesian product:

Pc
k :=

k×
i=1


M, if ci = 0

Ω◦, if ci = 1

Using the Lebesgue measures for area and volume onM and Ω◦, we can define

a combined product measure on P :

µ (D) :=
∞

∑
k=1

∑
c∈{0,1}k

µc
k (D ∩ Pc

k ) where µc
k (D) :=

∫
D

k

∏
i=1


dA(xi), if ci = 0

dV(xi), if ci = 1

To find the path space formulation, let us insert the operator form of the

equilibrium equation (3.6) into the measurement integral (3.8):

Ij =
∫
M

∫
S2

W(j)
e (x, ω)(G(KLi + Le))(x, ω)dσ⊥x (ω)dA(x).

2But it would be straightforward to add by extending the definition of We appropriately and
defining (3.8) as a sum of integrals over surfaces and volumes.
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Expanding the G operator leads to

=
∫
M

∫
S2

W(j)
e (x, ω)

[ ∫ xM(x,ω)

x
τ(x↔ y) [KLi + Le](y,−ω)dy

+ τ(x↔ xM(x, ω)) [KLi + Le](xM(x, ω),−ω)

]
dσ⊥x (ω)dA(x).

Using a change of variables (see Section 3.3), we can turn the two summands

into a volume and a surface integral, respectively:

=
∫
M

[ ∫
Ω◦

W(j)
e (x← y) τ(x↔ y) G̃(x↔ y) [KLi + Le](y→x)dV(y)

+
∫
M

W(j)
e (x← y)τ(x↔ y) G̃(x↔ y)[KLi + Le](y→x)dA(y)

]
dA(x).

Using the fact that KLi = KSLe = ∑∞
k=1(KG)kLe, this can be rewritten as

=
∞

∑
k=0

∫
M

[ ∫
Ω◦

W(j)
e (x← y) G(x↔ y) [(KG)kLe](y→x)dV(y)

+
∫
M

W(j)
e (x← y) G(x↔ y)[(KG)kLe](y→x)dA(y)

]
dA(x). (3.10)

where we have defined a new geometric term that also accounts for attenuation:

G(x↔ y) := G̃(x↔ y) τ(x↔ y).

In the above geometric sum, the operators G and K are reversed in com-

parison to previous encounters (e.g. Equation (3.7)). This makes it possible to

perform additional simplifications: consider the concatenated operator KG for

y ∈ M:

(KGh)(y→x) =
∫

S2
fs
(
xM(y, ω′)→y→x

) [ ∫ xM(y,ω′)

y
τ(y↔ z) h(z,−ω′)dz

+ τ(y↔ xM(y, ω′)) h(xM(y, ω′),−ω′)

]
dσ⊥y (ω′).
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As before, we can perform a change of variables to volume and surface integrals:

=
∫

Ω◦
fs (z→y→x) G(y↔ z) h(z→y)dV(z)

+
∫
M

fs (z→y→x) G(y↔ z) h(z→y)dA(z)

For y ∈ Ω◦, we get

(KGh)(y→x) = σs

[ ∫
Ω◦

fp (z→y→x) G(y↔ z) h(z→y)dV(z)

+
∫
M

fp (z→y→x) G(y↔ z) h(z→y)dA(z)
]

To unify the two cases, we define the generalized scattering function f̄ as

f̄ (z→y→x) :=


σs fp(z→y→x), y ∈ Ω◦

fs(z→y→x), y ∈ M
(3.11)

which leads to a single definition on the whole domain:

(KGh)(y→x) =
∫

Ω◦
f̄ (z→y→x) G(y↔ z) h(z→y)dV(z)

+
∫
M

f̄ (z→y→x) G(y↔ z) h(z→y)dA(z).

Inserting increasing powers of KG into Equation (3.10) leads to a nested integral.

A cumbersome but straightforward rearrangement of its terms results in the

following compact representation on path space:

Ij =
∫
P

f j(x̄)dµ(x̄) (3.12)

where

f j(x̄) = f j(x1 · · · xn) = Le(x1→x2)

[
n−1

∏
k=2

f̄ (xk−1→xk→xk+1) G(xk−1 ↔ xk)

]

· G(xn−1 ↔ xn)W(j)
e (xn−1→xn). (3.13)

Due to the definition of path space (3.9) and its associated measure, integrating

f j over P implies integration of f j over all 2k configurations for each k = 1, . . . , ∞.
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Figure 3.4: Illustration of the different components of the path-space contribution
function f j for a path with four vertices.

The reversed order of arguments to the importance function We is simply due

to the convention that “→” indicates the flow of light.

Based on this definition, there is a different f j for each path length k that

expresses its throughput as a function of the transport along edges and scattering

at vertices. Figure 3.4 shows an example of its structure for a four-vertex path.

To summarize: this chapter derived an explicit expression for the value of a

measurement as an integral over paths of different lengths and configurations.

This provides the freedom that is needed to build more flexible sampling

algorithms that directly operate on the space of paths involving both surface and

volume scattering events. We use this path space as the foundation of extended

implementations of Bidirectional Path Tracing, Metropolis Light Transport,

and Energy Redistribution Path Tracing, as well as the Manifold Exploration

technique proposed in this dissertation.
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CHAPTER 4

PATH SPACE MANIFOLDS

The Fermat principle [19] states that light travels along paths having a station-

ary optical length with respect to small variations of the path. Consider the

following simple two-dimensional scene, where a sensor measures the amount

of light arriving from a light source viewed through a mirror:

Emitter Sensor

Mirror

Figure 4.1: A simple flatland scene involving specular paths, with one example path
highlighted.

Assuming that the vertical coordinates are fixed at y1 = y3 = 1 and y2 = 0,

the optical length as a function of the free coordinates is given as

L(x1, x2, x3) =
√

1 + (x1 − x2)2 +
√

1 + (x3 − x2)2,

which has the derivative

L′(x1, x2, x3) =
x2 − x1√

1 + (x1 − x2)2
+

x2 − x3√
1 + (x3 − x2)2

.

Solving for an extremum by setting L′ to zero yields the relation

L′(x1, x2, x3) = 0 ⇔ x2 =
x1 + x3

2

This means that for a light-carrying paths, the position of x2 is completely

determined by x1 and x3
1. The set of such paths thus has a lower dimension,

1Or, alternatively, the position of any vertex is given by the positions of the two other vertices.
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and it is embedded in the ambient path space. We refer to this as the specular

manifold—in this case it is simply a plane:

S = {(x1, x2, x3) ∈ P | 2x2 = x1 + x3}

In this section, we derive the geometry of such manifolds in a general setting

and show how it is connected to the underlying light transport problem.

4.1 Prior work involving specular reflection geometry

Separate from work on global illumination algorithms, various research has

examined the properties of specular reflection paths. Mitchell and Hanrahan [42]

devised a method to compute irradiance from implicitly defined reflectors, using

Fermat’s principle with interval Newton’s method to locate all reflection paths

from a source to a point, and wavefront tracing methods from classical optics to

compute the irradiance arriving along these paths. Walter et al. [75] proposed a

related method that computes the singly scattered radiance within a refractive

object with triangle mesh boundaries. Like these works, our method searches

for specular paths. But because it does so within the neighborhood of a given

path, it avoids the complexities and constraints entailed by a full global search.

Another difference is that our manifold formalism can be used to build a fully

general rendering system that is not limited to the specular paths that prompted

its design.

The widely used method of tracing ray differentials to aid in filtering surface

textures for antialiasing [23] also involves reasoning about the local structure

of a set of reflected paths—in this case, paths from the eye. Igehy’s approach

requires elementary local differential information only, in the form of derivatives

of surface normals, and does not require global surface descriptions as Mitchell
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and Hanrahan’s method does. Manifold exploration requires the same local

geometric information as Igehy’s approach, and can thus be implemented in

most modern ray tracing systems.

The analysis of reflection geometry presented by Chen and Arvo [4, 5] is

closest to the mathematics underlying our proposed methods. Their work relies

on a characterization of specular paths via Fermat’s Principle. Using Lagrange

multipliers, the authors derive a path Jacobian and path Hessian with respect to

perturbations of the endpoint of a path and use it to accelerate the interactive

display of reflections on curved surfaces. The path Jacobian is related to the

derivatives that we propose to use to define tangent spaces to the specular

manifold while solving for path transitions. However, the use of this derivative

and the goals of the research are entirely different: in their case, estimating

changes to viewing paths, and in our case, tracking the evolution of specular

paths in a very general context, as part of an unbiased rendering system.

The Fermat principle is a deep variational statement about the fundamen-

tal properties of light. Unfortunately, computations with it tend to become

burdensome when dealing with longer paths that involve multiple specular

interactions. While they appear very different in character, local2 statements

like Snell’s law of refraction and the law of specular reflection can be shown

to be equivalent to the Fermat principle. Thus, although the Fermat principle

was used to motivate this chapter, we will from now on use a special half-vector

formulation of these local laws, which considerably simplifies the derivation.

A less related but relevant idea is integrating over continuous paths in

volume rendering applications, known as the path integral formulation of

radiative transfer [62, 52]. This work, with its implications for the concentration

of transport in path space, suggests the possibility of using MCMC to integrate

2These are called local, since they specify the behavior of light at the individual surfaces.
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over multiple-scattering paths in volumes, as discussed in Chapter 7.

Manifold exploration is a technique for integrating the contributions of sets

of specular or near-specular illumination paths to the rendered image of a

scene. The general approach applies to surfaces and volumes and to ideal and

non-ideal (glossy) specular surfaces. In this chapter we begin by examining

the manifold defined by ideal specular reflection or refraction, in the setting of

surfaces without participating media. In the following section we develop this

theory into a rendering method for scenes combining ideal specular surfaces

with fairly diffuse surfaces. We will then go on to generalize the method to

glossy surfaces and finally extend it encompass participating media with both

isotropic and highly directional scattering.

4.2 Motivating examples

As we have seen, the path space formulation of light transport provides a

flexible foundation for the development of rendering algorithms. However,

in the presence of ideal specular reflection, some difficulties arise, which are

normally sidestepped in the transition from theory to algorithm, but which we

prefer to confront directly. When some surface interactions are specular, as we

saw in the simple example at the start of this chapter, the entire contribution to

the path space integral is from paths that obey specular reflection or refraction

geometry, and the set of such paths is lower in dimension than the full path space.

For instance, consider a family of paths of the form LDSDE (in Heckbert’s [20]

notation) with one specular reflection vertex. These paths belong to the P5

component of P , but the paths that contribute all have the property

(−−→x3x2 +
−−→x3x4

)
‖ N(x3),
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that is, the half-vector at x3 is in the direction of the normal. This places two

constraints on the path, meaning that all contributing paths lie on a manifold S

of dimension 8 embedded in P5, which is of dimension 10. The integral is more

naturally expressed as an integral over the manifold S , rather than as a singular

integral over the whole path space.

To compute illumination due to the specular paths, we use a local parame-

terization of the manifold in terms of the positions of all nonspecular vertices

on the path: ∫∫∫∫
S

f (x1 . . . x5)dA(x1)dA(x2)dA(x4)dA(dx5)

Note the missing integral over x3, the specular vertex. The contribution function

f still has the same form, a product of terms corresponding to vertices and

edges of the path, but the BSDF value at the specular vertex is replaced by a

(unitless) specular reflectance value, and the geometry factors for the two edges

involving the specular vertex are replaced by a single generalized geometry

factor that we will denote G(x2↔x3↔x4), i.e.:

=
∫∫∫∫

S
Le(x1→x2) G(x1 ↔ x2) f (x1→x2→x3) G(x2 ↔ x3 ↔ x4) R

f (x3→x4→x5) G(x4 ↔ x5)We(x4→x5)dA(x1)dA(x2)dA(x4)dA(dx5).

To find the right form of this term, recall that the standard geometry factor

for a non-specular edge (Section 3.3) was a change of variables factor describing

the derivative of projected solid angle at one vertex with respect to area at

the other vertex. The generalized geometry factor is defined analogously: the

derivative of solid angle at one end of the specular chain with respect to area at

the other end of the chain, considering the path as a function of the positions

of the endpoints. Figure 4.2 illustrates this for a more complex path involving

a chain of three specular vertices. We will explain below how G can be easily
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D S

S

Figure 4.2: The geometry factor (left) and the generalized geometry factor (right) are
both derivatives of projected solid angle at one end with respect to area at
the far end.

computed from the differential geometry of the specular manifold, which is

related to the differential geometry of the surfaces along the path.

4.3 Specular manifold geometry

In the general case, each path of length k belongs to a class in {D, S}k based on

the classification of each of its vertices. (In this scheme point or orthographic

cameras, and point or parallel lights, are denoted S, while finite-aperture cam-

eras and area lights are D.) Each S surface vertex has an associated constraint that

involves its position and the position of the preceding and following vertices:

ci(xi−1, xi, xi+1) = 0. (4.1)

The constraint function computes a half-vector at vertex i and projects it into

the tangent space; the resulting 2-vector is zero when the half-vector is parallel

to the normal. By making use of the generalized half-vector of Runge and

Sommerfeld [59], both reflection and refraction can be handled by a single
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constraint function3:

ci(xi−1, xi, xi+1) = T(xi)
Th(xi,

−−−→xixi−1,−−−→xixi+1), (4.2)

h(x, ω, ω′) =
η(x, ω)ω + η(x, ω′)ω′

‖η(x, ω)ω + η(x, ω′)ω′‖ (4.3)

where T(x) is a matrix whose columns form a basis for the shading tangent

plane at x, and η(x, ω) denotes the refractive index associated with the ray

(x, ω). This generalized geometry factor is related to the “extended form factor”

discussed by Sillion and Puech [58]. Note that the normalization factor in the

denominator of (4.3) may appear superfluous, as the constraint equation (4.1)

has the constant zero on its right hand side. The reasons for preserving this

denominator will become clear at a later stage in Section 6.2, when glossy

materials are considered.

“Specular” endpoint vertices also introduce constraints that additionally

depend on their type. For instance, when the endpoint is associated with a

directional light source (or an orthographic camera), the outgoing direction

x1→x2 must remain fixed. To avoid creating special cases that would complicate

a computer implementation, we found it easiest to introduce such a constraint

similarly to (4.2) by setting

c1(x1, x2) = T(x1)
T−−→x1x2 ( = 0)

where the tangent space T(x1) contains two arbitrary linearly independent

vectors that are perpendicular to the direction of the light source or camera.

When x1 is a vertex on a point emitter (or on the aperture of a pinhole camera),

the constraint only involves the position of the endpoint (i.e. x1 = const).

To make our constraints easier to formulate, we implicitly identify each

vertex xi with an associated point in IR2 using local parameterizations of M.
3 This constraint is a computationally convenient way of simultaneously stating the law of

reflection and Snell’s law. It was introduced to graphics by Walter et al. [74].
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These parameterizations may be defined on arbitrarily small neighborhoods,

since only their derivatives are relevant to what follows.

We focus on a path x1, . . . , xn with n vertices, of which p are specular. In

this case, the constraints can be stacked together into a function C : IR2n→ IR2p

parameterized by a pair of local coordinates at each vertex, and the specular

manifold is simply the set

S = {x̄ | C(x̄) = 0} (4.4)

Expressing S using a constraint in this way makes it convenient to work with

neighborhoods of a particular path. The Implicit Function Theorem [60] guaran-

tees the existence of a parameterization of the manifold, in the neighborhood of

any path x̄ that is nonsingular (in the sense explained below). This parameteri-

zation is a function q : IR2(n−p)→ IR2p that determines the positions of all the

specular vertices from the positions of all the nonspecular vertices. Furthermore,

the derivative of q, which gives us the tangent space to the manifold at x̄, is

simple to compute from the derivative of C.

For the specifics we restrict ourselves to the case of a single chain of specular

vertices with non-specular vertices (surfaces, cameras, or light sources) at the

ends. Paths with specular endpoints are handled with simple variations of

this scheme. This suffices to cover all cases by considering multiple chains

along the path separately. Number the vertices in the chain x1, . . . , xk, with x1

and xk being the (non-specular) endpoints of the segment and the remaining

k− 2 vertices being specular. In this case C : IR2k→ IR2(k−2), and the derivative

∇C =
(

∂Ci
∂xj

)
ij

is a matrix containing k− 2 by k blocks, each of size 2 by 2. Each

block contains the partial derivatives of one of the constraint functions with

respect to the coordinates of one of the local surface parameterizations. Each

manifold constraint (4.1) depends on three vertices, and as a result, this matrix
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(a) An example path (b) Associated constraints

(c) Constraint Jacobian (d) Tangent space

S

D

S

where

Figure 4.3: The linear system used to compute the tangent space to the specular man-
ifold, also known as the derivative of a specular chain with respect to its
endpoints.

has a block tridiagonal structure (Figure 4.3).

The Implicit Function Theorem gives us a parameterization of the manifold

in terms of any two vertices, and if we pick x1 and xk this simply says that the

path, in a neighborhood of the current path4, is a function of the two endpoints.

Furthermore, it also tells us the derivative of that parameterization, which is

to say, the derivative of all the specular vertices’ positions with respect to the

positions of the endpoints. If we partition the derivative ∇C, as shown in

4Because it is possible to have several separated specular paths joining two points, the
parameterization cannot be global.
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Figure 4.3 (c), into 2-column matrices B1 and Bk for the first and last vertices

and a square matrix A for the specular chain, then the tangent space to the

manifold is

TS(x̄) = −A−1
[

B1 Bk

]
.

This matrix is k− 2 by 2 blocks in size, and each block gives the derivative of

one vertex (in terms of its own tangent frame) with respect to one endpoint.

In general, the specular chain x1 . . . , xk will not be globally unique in the

sense that there may be other valid configurations having x1 and xk as endpoints.

The methods discussed in this thesis take special precautions to deal with this

type of non-uniqueness.

In some cases, the chain may not even be locally unique, which occurs when

one endpoint is on a caustic due to light emitted from the other endpoint. In

this case, xk receives infinite power per unit area, and the matrix A ceases to be

invertible. This singular case will be discussed later.

We use TS(x̄) for two things: to navigate on the manifold and to compute

the generalized geometry factor. The right two or left two columns of TS(x̄) are

useful for updating the specular chain with x1 or xk held fixed, respectively, and

a Newton-like iteration using this derivative forms the basis of the algorithm

discussed in the next section.

At the beginning of Section 4.2, we introduced a generalized geometry factor

that became necessary when integrating over specular paths. The top-right

or bottom-left block of TS(x̄) can be used to compute this factor as follows.

Assuming orthonormal parameterizations5, the determinant of the top-right

block gives the ratio of an infinitesimal area at xk to its reflection/refraction,

as observed from x1, measured on the surface at x2. To convert this to a ratio
5If the parameterizations are not orthonormal, two additional determinants are required to

account for the change in area.
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of area at xk to solid angle at x1, we multiply this determinant by the ordinary

geometry factor G(x1↔ x2); this product is the generalized geometry factor

G(x1↔· · ·↔xk).

G(x1↔· · ·↔xk) =
∣∣∣P2A−1Bk

∣∣∣G(x1↔x2) (4.5)

=
∣∣∣Pk−1A−1B1

∣∣∣G(xk−1↔xk),

where Pi is a 2 by 2(k− 2) matrix that projects onto the two dimensions associ-

ated with vertex i. A simple example computation is shown below.

A useful property of this framework is its reliance on local information that

is easily provided in ray tracing-based rendering systems. To compute the

blocks of the A and B matrices, we must have access to the partial derivatives

of position and shading normal with respect to any convenient parameteri-

zation of the surfaces, along with the refractive indices of all objects. These

are exactly the same quantities also needed to trace ray differentials through

refractive boundaries, which is part of many mature ray tracing-based render-

ing systems. A consequence of the simple form of the constraint (4.4) is that

our technique works with any object that can provide such local information,

including implicitly defined shapes or triangle meshes with shading normals.

When the shape associated with a vertex xi uses shading normals that are

distinct from its geometric normals, we define a shading tangent space T̃(xi)

that is found from T(xi) using Gram-Schmidt orthogonalization with respect to

the shading normal. This new tangent space, and its derivatives with respect to

the parameterization, are then used in Equation (4.2) and ∇C.

A simple example: We now demonstrate how to compute the tangent space

and generalized geometric term associated with a simple example path shown

in Figure 4.4. This is a path with three vertices; x1 and x3 are planar endpoints
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Figure 4.4: An example path with three vertices

used to parameterize the manifold, and x2 lies on a specularly reflecting cylinder

that stretches out along the z-axis.

Assuming that this path is encountered in a ray tracer similar to PBRT [49]

or Mitsuba [25], the rendering system will associate an intersection data record

with each vertex containing (amongst other things) the position and surface

normal, as well as derivatives thereof along some parameterization. Suppose

that the information provided is as follows:

x1 =
(
− 1, 2, 0

)
, ∂ux1 =

(
− 1, 0, 0

)
, ∂vx1 =

(
0, 0, 1

)
,

n1 =
(

0,−1, 0
)

, ∂un1 =
(

0, 0, 0
)

, ∂vn1 =
(

0, 0, 0
)

,

x2 =
(

0, 1, 0
)

, ∂ux2 =
(

1, 0, 0
)

, ∂vx2 =
(

0, 0, 1
)

,

n2 =
(

0, 1, 0
)

, ∂un2 =
(

1, 0, 0
)

, ∂vn2 =
(

0, 0, 0
)

,

x3 =
(

1, 2, 0
)

, ∂ux3 =
(

1, 0, 0
)

, ∂vx3 =
(

0, 0, 1
)

,

n3 =
(

0,−1, 0
)

, ∂un3 =
(

0, 0, 0
)

, ∂vn3 =
(

0, 0, 0
)

Note that the parameterizations above are locally orthonormal—this is generally

preferable, since it simplifies many computations involving ∇C. In practice, we

can simply apply a suitable linear transformation to the tangents and normal

derivatives to make them correspond to a locally orthonormal chart. Let us now

compute the entries of ∇C.
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Recall that the constraint associated with vertex x2 is

C(x1, x2, x2) = T(x2)
T
(

x1 − x2

‖x1 − x2‖
+

x3 − x2

‖x3 − x2‖

)/∥∥∥∥ x1 − x2

‖x1 − x2‖
+

x3 − x2

‖x3 − x2‖

∥∥∥∥
As mentioned earlier, the normalization is technically unnecessary to define

the manifold, but we include it for reasons that will be seen later. To compute

derivatives of this expression, we can parameterize all needed ingredients to

first order using the above data records, i.e.

xi(ui, vi) = xi + ui(∂uxi) + vi(∂vxi), ni(ui, vi) = ni + ui(∂uni) + vi(∂vni)

T(u2, v2) =

∂ux2 − 〈∂ux2, n2(u2, v2)〉n2(u2, v2)

∂vx2 − 〈∂vx2, n2(u2, v2)〉n2(u2, v2)


Here, ui = vi = 0 corresponds to the current path. The rest is just a big nested

application of the product rule. When differentiating C, we get two terms: one

which accounts for changes of the tangent frame at x2, with h (Equation 4.3)

held constant, and one which accounts for changes of h, while the tangent frame

is held constant. For the former, we require derivatives of T, e.g:

∂T
∂u2

=

−〈∂ux2, ∂un2〉n2 − 〈∂ux2, n2〉∂un2

−〈∂vx2, ∂un2〉n2 − 〈∂vx2, n2〉∂un2

 ,

∂T
∂v2

=

−〈∂ux2, ∂vn2〉n2 − 〈∂ux2, n2〉∂vn2

−〈∂vx2, ∂vn2〉n2 − 〈∂vx2, n2〉∂vn2


and for the second term we can repeatedly apply the following vector calculus

identity:
∂

∂t
z(t)
‖z(t)‖ =

1
‖z(t)‖

∂z(t)
∂t
− z(t)
‖z(t)‖3

〈
z(t),

∂z(t)
∂t

〉
where z is a vector-valued function that depends on t. The resulting expression

is quite messy and thus we only provide numerical values here. In particular,
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∇C is given by

∇C =

−1
4 0 −3

2 0 1
4 0

0 1
2 0 −1 0 1

2


and therefore

TS(x̄) = −A−1
[

B1 B3

]
=

−1
6 0 1

6 0

0 1
2 0 1

2

 .

Since the parameterizations are orthonormal, the geometric term between x1

and x3 is simply

G(x1 ↔ x3) =
∣∣∣P2A−1B3

∣∣∣G(x1↔x2) =

∣∣∣∣∣∣∣
1
6 0

0 1
2

∣∣∣∣∣∣∣ G(x1 ↔ x2) =
1

48
.

For a C++ implementation that computes ∇C, please refer to the appendix A2.
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CHAPTER 5

WALKING ON THE SPECULAR MANIFOLD

At their core, MCMC rendering techniques require an ability to make transitions

between nearby contributing paths. In the previous chapter, we defined the

specular manifold and described how to compute the tangent space associated

with a given specular path. In this section, we develop a local parameterization

of the manifold that makes extensive use of this tangent space information to

find neighboring paths. In particular, we propose an algorithm that moves one

of the endpoints of a specular chain and moves all the intermediate vertices to a

valid new configuration. Later, in Chapter 6, we show how to apply this local

parameterization as a key component of a MCMC rendering method.

To simplify the discussion, we will focus on the case where the position of

a vertex xn of a specular chain x1, . . . xn is adjusted to a given new position x′n,

while x1 is held fixed. We shall also briefly introduce the assumption that xn is

located on a planar surface of infinite extent.

Our manifold walking algorithm is based on two key insights:

1. The A and B matrices (Section 4.3) may be used to map an infinitesimal

in-plane movement of xn to displacements of the vertices x2, . . . , xn−1. We

can use these displacements to approximate a finite change to the path

simply by adding an offset to each vertex, but this will move the path off

the specular manifold.

2. Ray tracing provides a deterministic means of projecting an off-specular

path back onto the space of valid configurations. Given x1 and x2, we

can trace a sequence of rays xi→xi+1, at each step performing a specular

reflection or refraction exactly as in normal ray tracing, and this leads to

corrected positions x+2 . . . x+n .
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Figure 5.1: One iteration of updating a path using the specular manifold. (a) The
path vertices are modified according to a local linear model, which (b)
corresponds to a step along the tangent plane to the manifold, then (a) a
nearby valid specular path is found, which (b) corresponds to projecting
back onto the manifold.

By combining 1. and 2., we obtain a predictor-corrector type algorithm (Fig-

ure 5.1) that performs a step according to a local linear model, followed by

a projection that restores the specular configuration, resulting in a new path

x1, x+2 , . . . , x+n , and these steps are repeated until convergence. As long as the

prediction step solves the linear model and moves in the tangent space of the

manifold, this iteration behaves like Newton’s method, exhibiting quadratic

convergence near the solution.

As with all Newton-like iterations, it is not guaranteed to converge when

started far from the solution, since the linear model may not be accurate

enough to make progress. But since the model is first-order accurate, the

algorithm is guaranteed to make forward progress when the constraint function

is differentiable and the partial steps are small enough. Our algorithm uses

a simple heuristic to decrease the step size when progress is not made, then

increase back to full steps to get quadratic convergence as it approaches the

target configuration. This iteration is illustrated in Figure 5.1 and laid out in the

following algorithm:
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WalkManifold

(
x1, . . . , xn  x′n)

1 Set i = 0 and β = 1

2 while ‖xn − x′n‖ > εL

3 p = x2 − β T(x2)P2A−1BnT(xn)T(x′n − xn)

4 Propagate the ray x1→p through all specular

interactions, producing x+2 , . . . , x+n .

5 if step 4 succeeded and ‖x+n − x′n‖ < ‖xn − x′n‖

6 x2, . . . , xn = x+2 , . . . , x+n

7 β = min {1, 2 β}

8 else

9 β = 1
2 β

10 Set i = i + 1, and fail if i > N.

11 return x2, . . . , xn−1

We now describe each line in more detail:

Line 1: The variable i records the number of iterations until a specified max-

imum N is reached, and β denotes a step size that is dynamically

adjusted. The iteration begins with full-sized steps, i.e. β = 1.

Line 2: When the distance of vertex xn and the target x′n is small enough, the

iteration stops. Here, ε is a relative error threshold to a scene-scale

length L (we use L = maxi ‖xi‖ and ε = 10−7).

Line 3: This step makes use of the differential geometry of the manifold via the

components of the ∇C matrix, which are recomputed at every iteration.

Reading the expression from right to left, the vector from xn to x′n is first

mapped into the tangent space at xn using the 2x3 matrix T(xn)T; this

assumes that the plane parameterization of the vertex xn is orthogonal.
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Due to the manifold constraint, a displacement of the vertex xn is

accompanied by a corresponding displacement of all other vertices,

which can be found to first order using the matrix A−1Bn. For the

purposes of this method, we are only interested in changes of the

second vertex, which the matrix T(x2)P2 extracts as a 3D vector in

world space (Section 4.3 contains details on the matrices used).

Finally, the adjusted position of x2 is computed and stored as p; the

magnitude of the adjustment depends on whether full steps or sub-steps

are being taken (i.e. whether β = 1 or β < 1).

Line 4: Because of the nature of the linear extrapolation in Line 3, The point p

will generally not lie on any of the surfaces inM. In this case we can

find a tentative nearby vertex that does by tracing a ray from x1 to p, i.e.

computing x+2 = xM(x1,−→x1p). Since the second vertex was assumed to

be specular, the local scattering law (i.e. the law of specular reflection,

or Snell’s law) also determines the next vertex, and so on, until a new

tentative endpoint x+n is found.

Lines 5-10: If the local linear model is a good approximation of the manifold

within the region of interest, the extrapolation and projection steps will

succeed, and the adjusted endpoint will lie closer to the target position

than the preceding one. In this case, the algorithm accepts the tentative

set of vertices x+2 , . . . , x+n and uses them as the starting point of the next

iteration. Also, the step size is doubled up to a maximum value of

one (corresponding to full steps). In all other cases, the step is retried

using progressively smaller step sizes to ensure that the linear model

eventually becomes accurate. When the number of iterations exceeds a

certain threshold (we use N = 20), the iteration fails.
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To make this algorithm usable for general specular chains, we must remove the

previous assumption that the endpoint xn is located on a plane. Inspecting the

pseudocode reveals that the actual locations of x+n along the way from xn to x′n

only play a minor role: they are used to check progress and ensure that x+n ≈ x′n

at convergence. Hence, we can ignore the geometry of the last vertex and act

as if it was located on a plane containing both xn and x′n. We construct such a

plane and modify Line 4 of WalkManifold so that the last propagation step

computes an intersection against this virtual plane, ignoring the actual scene

geometry. Once the algorithm converges, we must ensure that xn−1 and xn are

mutually visible before reporting the manifold walk as successful.

In our implementation, we choose the plane normal using the following

symmetric orthogonalization procedure

nplane := γ
(
γ(n + n′)−

−−→
xnx′n〈γ(n + n′),

−−→
xnx′n〉

)
where n and n′ are the surface normals at xn and x′n, and γ(v) := v/‖v‖. This

ensures that the same plane is used for walks xn x′n and x′n xn.

To compute the matrix A, we derived symbolic expressions for the manifold

constraints in C (Equation 4.4). A C++ implementation is given in the appendix.

When solving the resulting linear system in step 3, it is beneficial to exploit

the special structure of this matrix, which becomes important when processing

specular chains with more than about ten vertices. We solve for p using a block

tridiagonal LU factorization, and this reduces the time complexity from O(n3)

to O(n), n being the number of vertices in the chain.

There are several situations in which this algorithm may fail to converge:

first, a specular path between x1 and x′n need not exist at all. Secondly,

WalkManifold usually cannot find paths that lie on a different connected

component of the manifold. Thirdly, when the local structure of the manifold
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is complex (e.g. due to high-frequency geometric detail of the reflectors and

refractors) and ‖xn − x′n‖ is large, the iteration may not converge to a solution.

Finally, the linear system may not be invertible, which happens when the

last path lies at the fold of a wavefront, e.g. a caustic receiving infinite power per

unit area; this is the locally non-unique case discussed in Chapter 4. Because

the associated set of configurations has Lebesgue measure zero, this case only

occurs rarely in simulations. During the ∼ 1012 manifold walks performed to

produce the results of this dissertation, we detected ∼ 1.7 · 105 non-invertible

linear systems. In the MCMC context it is not a problem for the iteration to fail

occasionally, as will be explained in the next section.

The manifold walking algorithm works reliably for large chains with over

10 vertices, especially when it is used by the transition rule discussed in the

next section, which only moves the endpoints of chains by a small amount.

In our scenes, we observe between 92 and 98% successful walks, taking 2-3

iterations on average to converge to the tolerance ε = 10−7. The failing 2-8%

mainly contain cases where WalkManifold failed for good reasons, because

it was asked to walk to a point for which there is no valid configuration on

the manifold.

We have shown that it is possible to obtain a local parameterization of the

neighborhood of a specular path using a simple iterative algorithm that is

informed by the differential geometry of the specular manifold. Our approach

works in a general setting and finds solutions reliably and efficiently. In the

next chapter, we present a new transition rule that proposes steps in path space

using manifold walks.
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CHAPTER 6

MANIFOLD EXPLORATION FOR SURFACES

Recall that in the context of MCMC, a transition rule, or perturbation, is a

random process that generates a proposal state conditioned on the current state

of a Markov chain (Section 2.4.5). It provides the basic means of navigating

through the state space, but to do this correctly the rule must satisfy two basic

criteria: transitions must be reversible (i.e. return to the previous state with

nonzero probability density), and the rule must also supply a function that

computes the probability of proposals conditioned on the current state up to

constant factors that are also shared with proposals in the reverse direction.

As discussed earlier, a transition rule should furthermore propose modifica-

tions of an appropriate scale in order to create an efficient sampling procedure.

A rule that takes large steps will tend to leave local maxima of the target distri-

bution π, and such steps are rejected with high probability. A rule that takes

tiny steps will find most of them accepted, but it will not explore the state space

well. Our perturbation is designed so that its scale naturally adapts to the scene,

including the geometry and material properties.

The new perturbation supports general scenes and can be used both with the

ERPT algorithm by Cline et al. and the path space MLT framework proposed

by Veach and Guibas, where it replaces and generalizes the lens, caustic, and

multi-chain perturbations. Depending on which combination is used, we call the

resulting algorithm either Manifold Exploration Path Tracing (MEPT) or Manifold

Exploration Metropolis Light Transport (MEMLT).
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6.1 Manifold perturbation

Given an input path, the manifold perturbation finds a nearby path using a

sequence of steps that can be grouped into sampling and connection phases (Fig-

ure 6.1). The sampling phase chooses a subpath to be modified that consists of

three non-specular vertices which are potentially separated by specular chains.

We shall denote these non-specular vertices as xa, xb, and xc. After establish-

ing the type of perturbation to be performed, the sampling step generates a

perturbed outgoing direction at the vertex xa and propagates it through the

specular chain between xa and xb (if any) until arriving at a new non-specular

vertex x′b in the neighborhood of xb. Then a manifold walk is used to update

the specular chain (if any) between xb and xc. If the configuration of the new

path (i.e. the arrangement of specular and nonspecular vertices) is different in

any way, the perturbation is rejected immediately.

Consider the setup shown in Figure 6.2: a glass egg focuses the sun onto a

diffuse surface, where it forms a caustic that is visible to the camera through a

mirror. Starting at the vertex xa (the camera, in this example), we can slightly

change the angle of the outgoing ray and propagate it through the mirror to

obtain a perturbed vertex x′b on the diffuse surface. To complete the perturbation,

we must somehow connect this new vertex to the light source, but it is not

Sample Connect

Figure 6.1: The manifold perturbation samples a perturbed outgoing direction from
a vertex xa and propagates it through a specular chain (if any) using ray
tracing until arriving at a non-specular vertex xb. To connect the vertices
xb and xc, the perturbation performs a manifold walk to determine the
positions of intermediate specular vertices (if any).
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half-vector equal
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Figure 6.2: Manifold perturbation example: a slightly perturbed outgoing direction at
xa is propagated until it encounters the non-specular vertex x′b. Previously,
it was not clear how to “connect” x′b to xc through multiple specular inter-
actions. Our method can find this connection given knowledge about the
previous path.

immediately clear how to do this because of the specular chain between the

vertices x′b and xc.

Up to this point, the proposed scheme is very similar to the set of pertur-

bations proposed by Veach and Guibas. However, recall that in their work,

perturbations must propagate through the path until arriving at a pair of adja-

cent non-specular vertices (“DD” in Heckbert’s [20] notation) that can be used

to establish a connection edge. Any attempt to connect two sampled subpaths

that involves a specular vertex must fail, since the probability of creating a valid

path in this manner is zero.

In comparison, our perturbation can stop at the vertex xb and use the

WalkManifold algorithm to solve for a valid configuration of the specular

chain between x′b and xc (Figure 6.2). This seemingly subtle difference has

major repercussions on the types of scenes that can be rendered efficiently.

In particular, the resulting method can systematically explore large classes of

specular paths instead of having to rely on random sampling alone.
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In the following, we discuss the perturbation in more detail; first for the ideal

specular case and then in a more general form that extends to rough surfaces.

Strategy sampling: Motivated by the desire to support a large range of differ-

ent types of path modifications with high probability, the sampling step first

chooses among the possible perturbation strategies for a given path by selecting

three vertices as follows. Given a path x1, . . . , xk, uniformly select a non-specular

initial vertex xa, as well as a perturbation direction (i.e. towards the light source

or towards the camera). Walk along the path in this direction until the first

non-specular vertex is encountered, and continue until a second non-specular

vertex is found. This path traversal may fail by walking past the end of the path,

in which case the strategy sampling phase is simply restarted from scratch. This

determines xa, xb and xc. For notational convenience, assume that a < b < c.

Perturbation sampling: With the overall strategy established, the sampling

phase now perturbs the path segment xa+1, . . . , xb. The goal here is to produce

a new subpath x′a+1, . . . , x′b that is “nearby”. When the vertex xa denotes a

surface scattering event with incident and exitant directions ωi =
−−−→xaxa−1 and

ωo = −−−→xaxa+1, the perturbation determines x′a+1 by tracing a ray in a direction

ω′o that is sampled from a suitable spherical distribution D(ω′o) concentrated

around ωo. It is absolutely critical that this distribution generates direction

changes of the appropriate scale: for instance, when xa is a diffuse material,

relatively large perturbations are in order. On the other hand, when xa is a glossy

material that only reflects into a small cone of directions, large perturbations

will almost always be rejected, reducing performance.

Observe that a useful hint about the right scale can be obtained directly from

the scattering model at xa, in particular from the associated importance sampling
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density p(ωi→ωo). When this sampling density is high, ωo is likely located on

a sharp peak of the scattering function, and small steps are appropriate.

Our strategy is to sample from a distribution D(ω′o) centered at ωo whose

concentration is set so that D(ωo) equals λ2p(ωi→ωo). For D(ω′o), we use the

spherical von Mises-Fisher distribution. Note that this distribution can cause

certain numerical difficulties during evaluation and sampling; information on

how to avoid them is provided in the Appendix A3.

The parameter λ (generally set between 50 and 500) specifies how large

the perturbations are relative to standard BSDF sampling. This is the main

parameter of our technique, and it affects how far perturbations will move

in path space. When λ is set to an inappropriately low or high value, the

amount of noise present in the output renderings increases. In the first case,

too few mutations are accepted, causing the chain to become “stuck” in certain

paths for many iterations. In the latter case, the steps taken by the chain

are too small to effectively explore path space, and this results in the typical

coherent noise patterns that are known from other MLT-type algorithms. A

comparison involving different settings is shown in Figure 6.3. We currently set

this parameter manually to achieve a desired acceptance ratio, but this could in

theory be automated using adaptive MCMC [13].

When xa is a camera or light source, we choose a new outgoing direction

in much the same way, but query the underlying model for the directional

density of the associated sampling method (e.g. the density per solid angle

corresponding to choosing pixels uniformly in screen-space). To further enlarge

the space of possible perturbations, following Veach, we separate the emission

and response profile of the camera and light sources into their spatial and

directional components so that they can be sampled independently from one
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(a) λ = 1 (b) λ = 3

(c) λ = 10 (d) λ = 30

(e) λ = 90 (f) λ = 270

Figure 6.3: The effects of the λ parameter. This scene was rendered with relatively short
Markov Chains (100 steps), hence the range of “good” parameter values
is lower than in our other examples scenes. Modeled after a scene by Eric
Veach.
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another. In our implementation, we found it convenient to realize this approach

by representing the camera and light source of a path using two vertices each,

where one is a stateless pseudo-vertex and the other represents the position on

the light source or camera (see Appendix A4 for details). When xa+1 is such

a position vertex, we perturb its location on the aperture or light source by

sampling a tangential displacement from a 2D normal distribution with variance

ρ/(2πλ2), where ρ is the surface area. Being able to perturb both the position

and outgoing direction at the path endpoints is valuable when rendering effects

such as smooth shadows and out-of-focus blur.

After x′a+1 has been determined in this manner, the perturbation is propa-

gated through the specular chain until reaching x′b. This process is deterministic.

Connection: When there is no specular chain between x′b and xc, the connec-

tion step only entails checking that the vertices are mutually visible, and that

their scattering models carry illumination along the connection edge. When

there is a chain, we first set

x′c−1, . . . x′b+1 = WalkManifold(xc, . . . xb→x′b)

and then perform the same verification.

Recall that a key requirement of the Metropolis-Hastings algorithm discussed

in Section 2.4.5 was that a nonzero transition probability T(x, x′) > 0 also implies

that T(x′, x) > 0. This creates a potential issue when walking on the manifold,

because WalkManifold can be non-reversible. It might succeed in moving

from x to x′ but fail to move from x′ to x. Even when the reverse iteration

converges, the manifold can contain bifurcations so that it may converge to a

different solution. Therefore, we always perform another manifold walk in the

reverse direction and reject the perturbation if the path did not return to its
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original configuration. In the example scenes, we observed between 0% and

0.4% non-reversible walks.

Transition probability computation Finally, the change in the contribution

function is computed and, together with the transition probabilities, used to

randomly accept or reject the proposal with probability

r(x̄, x̄′) = min

{
1,

f j(x̄′)T(x̄′, x̄)
f j(x̄)T(x̄, x̄′)

}
(6.1)

where f j is the contribution function (Equation 3.13) and x̄ and x̄′, denote the

original and proposal path respectively. Note that many factors cancel in the

above ratio, particularly all of those in f j that are associated with the unchanged

path segment, or common terms in the transition probability. For instance, the

probability of choosing a particular sampling strategy cancels, since it only

depends on the (unchanged) path configuration.

We require that T(x̄, x̄′) and T(x̄′, x̄) express the density of forward and

reverse proposals in a common measure so that it is valid to consider ratios

of these probabilities. Since the measure used by our integral over specular

manifold paths (Section 4.2) is the area product measure of the non-specular

vertices, and because in this setting, the only non-specular vertex that changes

during a perturbation is x′b, we must determine the area density at x′b that results

from the perturbation of ωo. Observe that sampling an outgoing direction ω′o

from D(ω′o) at xa, and propagating it through the first specular chain, produces

area density D⊥(ω′o) G(xa ↔ · · · ↔ x′b) on the surface at x′b (where D⊥(ω′o) =

D(ω′o)/| cos(na, ωo)| denotes probability with respect to the projected solid

angle measure at xa). This is the needed transition probability T(x̄, x̄′).

Recall that the previous discussion made use of an importance function W(j)
e

that modeled the sensitivity of a pixel j to illumination. However, in a practical
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MCMC-based rendering system, we will generally want to sample paths based

on their contribution to the entire image rather than to a single pixel, and then

record their contributions to the individual pixel integrals that are affected. This

is accomplished by replacing W(j)
e in (3.13) with an importance function that

measures the overall luminance received on the image plane.

6.2 Extension to glossy materials

The method presented thus far can be used for scenes with both specular

and non-specular transport, but the two classes are handled in fundamentally

different ways. This is unfortunate, since a near-specular chain through an

almost-smooth dielectric object would fall under the non-specular classification

and hence be treated analogously to a group of diffuse interactions. As a result,

such near-specular paths cannot be explored as effectively as perfectly specular

ones. However, it turns out that a simple generalization of the specular case

suffices to remove this “hard” classification and to encompass glossy materials

that fall in between the two extremes.

Consider the motivating example in Figure 6.4: the scene shown on the

upper left contains an ideally specular glass egg, and only a single valid light

path joins the vertices xb and xc through it. In the schematic path space view

on the right hand side, we can observe that the set of valid paths is a lower-

dimensional subset of path space; all energy is concentrated on this manifold.

The manifold perturbation can be seen to perform random steps on the zero

level set of the function C.

In the glossy case (bottom left), this situation changes: the vertices xb and

xc are now joined by an entire family of paths. Also, the path space integrand

corresponding to a chain of glossy interactions has its energy concentrated in
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Figure 6.4: Generalizing from the specular to the glossy case

a thin “band” near the specular manifold, and the key idea of how we handle

glossy materials is to take steps along a family of offset manifolds that are parallel

to the specular manifold, so that path space near the specular manifold can be

explored without stepping out of this thin band of near-specular transport. In

this section, we add a simple extension that endows the perturbation with the

ability to walk on offset manifolds and to recognize when this is appropriate.

For this, we first replace Equation (4.4) with the offset manifold

So = {x̄ | C(x̄) = o} , (6.2)

where o captures the offset from ideal specular transport. Reinspecting the

components of the constraint function C (Equation 4.2)

ci(xi−1, xi, xi+1) = T(xi)
T h(xi,

−−−→xixi−1,−−−→xixi+1)︸ ︷︷ ︸
=: mi

( = oi)

then provides an intuitive explanation for the contents of the vector o: the two

entries associated with each vertex xi record the x and y coordinates of the

93



“S”

S

D

traced

half-vector preserved
in surface frame

updated

Figure 6.5: Perturbation of a path with near-specular surface interactions: instead of
requiring that the half-vectors agree with the surface normals, their direction
is preserved in the surface frame.

half-vector (henceforth referred to as mi) projected into the local tangent frame.

We like to interpret these half-vectors in the context of microfacet theory:

recall that microfacet models describe the interaction of light with random

surfaces composed of microscopic dielectric or conducting facets that are ori-

ented according to a microfacet distribution. In this case, mi (which is now

different from the shading normal ni) is the normal of those microfacets that are

responsible for the reflection or refraction along the subpath xi−1→ xi→ xi+1.

This finally explains the need for the normalization term in the denominator

of h in Equation (4.3): with this term, it is possible to recover the microfacet

normal mi ∈ R3 from its tangential projection stored in the manifold offset

constant oi ∈ R2. Our extended perturbation then preserves the projection of

this microgeometry normal mi as an invariant during the manifold traversal1.

1For this to work well, the local surface parameterization should have continuous tangent
vector fields within the region that can be reached by one MCMC step. When the tangent vector
fields are discontinuous, or when they involve considerable rotation between nearby points, the
perturbation takes larger steps that result in a lower acceptance rate.
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Changes to the manifold perturbation: Since the differential geometry of

the offset manifold is identical to that of the ordinary manifold (involving

only different offset constants), the only required change in WalkManifold

affects the ray tracing step on line four, where the algorithm now reflects

and refracts using mi instead of ni. Similarly, the deterministic phase of the

manifold perturbation responsible for propagating the sampled direction at xa

to a position x′b uses these normals instead. Note that it is straightforward to

handle both cases, near-specular and specular perturbations, using the same

implementation.

Recognizing near-specular transport: An important issue in the treatment

of general scattering is the decision of whether the surface associated with

a scattering event is “smooth enough” to be classified as part of a specular

chain. We make this decision randomly by assigning a specular probability

ψ(xi) to each vertex that takes on values 0 and 1 when xi is diffuse or specular,

respectively, and values in (0, 1) when xi is at a rough interface. This avoids the

issues of “hard” classifications that are commonly used in rendering algorithms.

Figure 6.6 shows a comparison between ψ(xi) = 0, ψ(xi) = 1, and the specular

probability function proposed in this thesis. For specifics on our choice of ψ(xi),

please refer to the Appendix A1.

Transition probability: In the purely specular case discussed earlier, the pro-

posal distribution T and target distribution f j were both supported on the same

space S . This permitted computing transition probabilities under an arbitrary

projection (e.g. onto the vertex xb), since the determinant of the associated

change of variables canceled when considering ratios of the form f j/T.

In the glossy case, this does not hold anymore: T is a distribution on an
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(a) always non-specular (b) always specular

(c) probabilistic

Figure 6.6: Consistently classifying glossy materials as non-specular or specular pro-
duces unsatisfactory results. Instead, our method makes this decision
randomly whenever encountering a rough object (modeled after a scene by
Cline et al.)

offset manifold So, whereas f j is defined on the higher-dimensional space
⋃

o So.

To compute forward and reverse transition probabilities that remain meaningful

when they simultaneously occur in the acceptance ratio we must perform a

change of variables that separates out all dimensions that are perpendicular to

the current offset manifold (i.e. which remain invariant during a perturbation).

We use a reparameterization of T using the parallel variable xb (the vertex that
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moves) and the perpendicular variables oi1 , . . . , oik (the preserved microfacet

normals). The indices i1, . . . , ik ∈ {a + 1, . . . , c − 1} \ {b} refer to the glossy

vertices that were classified as specular. This change of variables causes a

determinant to appear in the final transition probability:

T(x̄, x̄′) = Tspec(x̄, x̄′)
∣∣∣∣ ∂ [xb, xi1 , . . . , xik ]

∂ [xb, oi1 , . . . , oik ]

∣∣∣∣ (1− ψ(xb))(1− ψ(xc)))
c−1

∏
i=a+1,i 6=b

ψ(xi).

(6.3)

Tspec refers to the transition probability of the purely specular case. The terms

involving ψ represent the discrete probability of the current (random) classi-

fication of the path in terms of specular and non-specular vertices. Since the

function ψ depends on the roughness of the vertices, which may change during

a perturbation, we must account for it here to maintain detailed balance.

The determinant in (6.3) is not hard to compute. Recall that the A-matrix

(Section 4.3) maps perturbations of the vertex positions to changes of the half-

vectors. Here, we seek the opposite: how all the non-specular vertices move

as a function of o and xb. We therefore compute the matrix A over the vertex

range xa+1, . . . , xc−1 and make one small adjustment: the two rows associated

with vertex xb are set so that there is a 2× 2 identity matrix on the diagonal

and zeroes elsewhere (see Figure 6.7). We then invert this matrix and discard

invert
discard
entries of
specular
vertices(full matrix)

“S” “S” “S”S
A perturbation with 3 glossy
and 1 specular vertices “S”

Figure 6.7: An illustration of the matrices involved in the glossy transition probability
computation.
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all rows and columns in this inverse that are associated with specular vertices;

the determinant of the result is the change of variables factor we seek. Note

that when the two chains only consists of glossy vertices, it is equivalent (and

considerably faster) to compute the inverse of the determinant of the block

tridiagonal matrix rather than doing a matrix inversion. When both chains only

involve specular vertices, the computation reduces to the case discussed earlier

in Section 6.1.

We have discussed a new perturbation rule that is able to explore the

neighborhood of paths involving ideally specular and off-specular reflection

and transmission in addition to diffuse interactions. Our rule handles the

off-specular case by a random classification of material interactions into a

diffuse-like and a specular-like case based on the roughness parameter of the

underlying reflectance model. This framework is general enough to be extended

to further kinds of interactions, and in the next chapter we will show how to

apply it to volumetric scattering.
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CHAPTER 7

MANIFOLD EXPLORATION FOR VOLUMES

Light transport in volumes tends to involve long multiple scattering processes;

for instance, when a photon enters a high-albedo material like a glass of milk

or a cloud, hundreds of scattering events may occur before it exits the volume

elsewhere. Such diffusion processes cause light to lose its directionality—hence,

there are no specular reflections in volumes per se.

On the other hand, each of the individual scattering events may be highly

directional, which is e.g. the case for many common household materials [43].

From a purely mathematical standpoint, the phase function of a strongly

forward-scattering volume is not unlike reflection from a rough mirror—this

suggests that we may be able to use manifold exploration to facilitate rendering

of such directionally peaked volume interactions as well.

Recall that the fast-varying part of a mirror BRDF is a function of the half-

Figure 7.1: Medium constraint

vector, and hence our method preserves it dur-

ing manifold walks. In the medium case, we are

interested in being able to handle highly peaked

phase functions that vary rapidly with the scat-

tering angle (i.e. the angle between the incident

and outgoing directions). For this purpose we

treat the scattering angle as analogous to the half vector, introducing the specular

manifold constraint

c(xi−1, xi, xi+1) = T(−−−→xi−1xi)
T−−−→xixi+1 ( = oi) (7.1)

where T(v) is a basis for the plane orthogonal to the direction v (Figure 7.1).

Because medium vertices can move arbitrarily in space, this still leaves one

degree of freedom per vertex, which we remove by preserving the distance to
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Figure 7.2: It is possible to extend the path space specular integration framework to
volumes, for instance to render volume caustics from refractive objects, such
as this dodecahedron-shaped metal luminaire with tinted glass inlays.

the scattering event (i.e. ‖xi−1 − xi‖ = const.). While computing the entries of

the constraint Jacobian ∇C, we use these two constraints in place of the previous

definition (Section 4.3) whenever a vertex describes a medium interaction.

7.1 Medium manifold perturbation

From an algorithmic perspective, manifold exploration for volumes is almost

identical to the surface case. Our implementation handles both cases jointly and

works with specular chains that contain both surface and medium interactions.

Apart from the new type of constraint (7.1), the computation of offset

manifold (6.2) tangent vectors is unchanged. In the ray tracing step 4 of

WalkManifold, when encountering a vertex xi−1 that is followed by a medium

interaction vertex xi, we set x′i = xi−1 + ‖xi−1 − xi‖d, where d is the outgoing

direction at xi−1 (this enforces the length constraint mentioned earlier). After-

wards, the manifold offset oi is transformed into an outgoing direction in the

new frame at x′i (Figure 7.1).
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As in the glossy surface case, we require a criterion that clarifies when

treating a medium vertex xi as non-specular is in order, and when it is better

handled by the manifold. Again, this decision is made probabilistically, based

on a modified specular probability function ψ(xi) described in the appendix.
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CHAPTER 8

RESULTS

We have implemented the proposed technique and prior work as extension

modules to the Mitsuba renderer [25]. All techniques operate on top of a newly

added path space abstraction layer (details in Appendix A4) that exposes cameras,

light sources, scattering models, and participating media as generalized path

vertex and edge objects with a common basic interface. This greatly simplified

the implementation effort, as bidirectional rendering algorithms can usually be

stated much more succinctly in terms of operations on vertices that are oblivious

to whether they contain, e.g., a camera model or a medium scattering event.

We compare the following algorithms:

• Primary sample space MLT by Kelemen et al., implemented on top of

bidirectional path tracing (PSSMLT).

• Path space MLT by Veach and Guibas (MLT).

• An extended form of energy redistribution path tracing by Cline et al.

(ERPT), which is seeded by bidirectional rather than unidirectional path

tracing. The ERPT implementation shares the caustic, lens, and multi-

chain perturbation with the previous algorithm. Since they introduce bias,

we did not use the post-processing filters proposed in the original paper.

• Manifold exploration path tracing (MEPT), which is structured similarly

to ERPT. We modified the original algorithm by replacing its highly

specialized caustic, lens, and multi-chain perturbations with the manifold

perturbation. Due to its general design, the new perturbation subsumes

and extends the capabilities of the original set.
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Scene Seed generator Perturb. Mutations Manifold walks Manif. size

samples/px. chains/px. λ total accepted total conv. avg. iter. avg. max.

Torus (MEPT) 32 2 100 1178 M 78.3% 1002 M 96.7% 2.3 3.4 7
Chandelier (MEPT) 64 3 160 1216 M 73.6% 975 M 97.6% 2.4 4.6 13
Chandelier (MEMLT) — — 160 3626 M 34.1% 376 M 98.4% 2.1 4.5 13
Table (MEPT) 32 1 300 1074 M 77.5% 868 M 95.5% 2.8 4.4 14
Table (MEMLT) — — 300 1921 M 35.9% 772.4 M 94.3% 3.2 4.4 14
GlassEgg (MEPT) 128 2 90 1533 M 72.4% 1246 M 92.2% 3.4 4.1 14
GlassEgg (MEMLT) — — 90 2774 M 40.3% 1101 M 92.5% 3.3 4.1 14

Table 8.1: Listing of seed generator and perturbation parameters, as well as perfor-
mance statistics.

• Manifold Metropolis Light Transport (MEMLT), which corresponds to

MLT with our perturbation (i.e. the bidirectional mutation and manifold

perturbation, but none of the original perturbations from MLT).

Due to the aforementioned abstraction layer, all techniques transparently sup-

port participating media even if this was originally not part of their description.

We found that MEPT generally performs better that MEMLT due to certain

limitations of the bidirectional mutation that are discussed later.

The rendering of result images was conducted in the cloud using Amazon

EC2 cc1.4xlarge instances, which, at that time, were eight-core Intel Xeon

X5570 machines. A single machine was used per image. To exploit the local

parallelism, our implementation runs a separate Markov chain on each core,

and the resulting buffers are averaged together when exposing the image.

We have rendered three views of a challenging interior scene containing

approximately 2 million triangles with shading normals and a mixture of glossy,

diffuse, and specular surfaces and some scattering volumes. One hour of pro-

cessing time was allocated to each rendering technique, and a comparison

of the resulting images is shown in Figures 8.1, 8.2, and 8.3. The converged

reference images were rendered in 48 hours. The one hour renderings are inten-

tionally unconverged to permit a visual analysis of the convergence behavior.
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Table 8.1 lists parameters and statistics collected during these renderings. The

path generator columns refer to the seeding scheme used by ERPT and MEPT,

which samples and subsequently resamples a number of paths per pixel before

launching Markov Chains. The statistics include the total number of mutations

and acceptance ratio, as well as the convergence behavior of the manifold walks

and vertex count of encountered manifolds.

Chandelier: In this set of results, the poor performance of MLT is most

apparent and is caused by the ineffectiveness of the bidirectional mutation in

finding long specular paths. Because it must decide up front on the configuration

of a path before generating it, most of the time the mutation fails, resulting

in acceptance rates under 1%. Consequently, too few jumps between disjoint

connected components of path space occur, causing parts of the image to have

an incorrect relative brightness. This weakness is inherited by MEMLT, which

also builds upon the bidirectional mutation. It is more successful at exploring

some of the diffuse-specular-diffuse paths through the bulbs but overall does

not work well on this scene. Densely seeding the same perturbations using

paths obtained from bidirectional path tracing at each pixel does not suffer from

this advantage. The resulting methods perform much better, as can be seen in

the ERPT and MEPT renderings.

Table: This scene is lit by the chandelier, with its glass-enclosed sources,

so all illumination is by specular paths. By reasoning about the geometry of

the specular and offset specular manifolds for the paths it encounters, our

perturbation rule is more successful at rendering paths—such as illumination

that refracts from the bulbs into the butter dish, then to the camera (6 specular

vertices)—that the other methods struggle with. The MLT rendering looks

too dark, because it did not find enough of these paths and mainly captures
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diffuse illumination from the walls. The noise in the ERPT result reveals that

the underlying bidirectional path tracer encountered some of those paths but

the Veach–Guibas perturbations are not able to explore path space around them

effectively. The primary sample space MLT variant also has difficulties rendering

this scene, because it has no knowledge about the underlying path geometry.

MEMLT produces a clean result, but the relative brightness of different parts of

the image is far from converged due to the bidirectional mutation’s difficulty in

performing sufficiently many jumps between them.

GlassEgg: In this scene, our technique’s ability to create a specular chain

containing both medium and surface interactions leads to fast convergence when

rendering the homogeneous forward-scattering medium (Henyey-Greenstein

phase function, g = 0.8) inside the glass egg. MLT and ERPT perform poorly

here, since they do not have suitable perturbations for exploring this space.

Because the MLT perturbations treat glossy and diffuse materials identically,

they have difficulty rendering the near-specular tabletop, producing streak-like

artifacts in the output rendering.
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MLTMLT

ERPTERPT

PSSMLTPSSMLT

Figure 8.1: Chandelier: This view contains a brass chandelier with 24 light bulbs,
each surrounded by a glass enclosure. The chandelier uses a realistic metal
material based on microfacet theory and is attached to the ceiling using
specular metal cylinders. This scene is challenging, as certain important
light paths are found with low probability, particularly those involving
interreflection between the bulbs and the body of the chandelier. In this and
the following comparisons, one hour of processing time was allocated to
each rendering technique.
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MEMLTMEMLT

MEPTMEPT

MEPT (48h)MEPT (48h)

Figure 8.1: Chandelier (continued)
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MLTMLT

ERPTERPT

PSSMLTPSSMLT

Figure 8.2: Table: This view of our room scene shows chinaware (using a BRDF with
both diffuse and specular components), a teapot containing an absorbing
medium, and a butter dish on a glossy silver tray. Illumination comes from
the chandelier in Figure 8.1.
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MEPTMEPT

MEPT (48h)MEPT (48h)

Figure 8.2: Table (continued)
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CHAPTER 9

CONCLUSION

In this dissertation, we investigated difficulties that current unbiased rendering

techniques encounter when rendering scenes involving certain types of “hard-

to-find” specular light paths. We began with a self-contained derivation of the

classical light transport operators and a path space integration framework that

accounted for the effects of surfaces and volumes. This formalism did not make

any special precautions for specular scattering; to begin to improve the behavior

of unbiased methods, it was first necessary to obtain a better understanding of

the joint behavior of chains of specular interactions on path space.

We therefore proposed a new theory of path-space light transport, which

cleanly incorporated specular scattering into the standard rendering framework.

In this theory, radiance measurements were conducted using nonsingular in-

tegrals over submanifolds of path space. We showed how to implicitly define

these manifolds, how to specify the associated integrand using a generalized

geometric term, and how to compute basic geometric properties, such as the

manifold’s tangent spaces. This led to a numerical method for moving around

in the manifold using iterative root-finding, a useful building-block for explor-

ing the neighborhood of a specular path. Due to its local nature, this method

was able to avoid the complexities of performing a global search over specular

paths. In practice, this meant that the search was fast, simple to implement,

and that it made minimal assumptions about the underlying material type and

surface representation.

Combining our results on specular light transport and the manifold walk-

ing algorithm, we proposed the manifold perturbation, a transition rule that

explores the specular manifold to find the steady-state lighting distribution
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of a scene as part of a Markov Chain Monte Carlo (MCMC) method. This

rule was usable within the frameworks of Metropolis Light Transport (MLT) or

Energy Redistribution Path Tracing (ERPT), producing rendering algorithms

with support for specular paths fundamentally built in at the core.

At that point, our method could be used for scenes with both specular and

non-specular transport, but the two classes were handled in fundamentally

different ways. This could be undesirable—for instance, an almost-smooth

dielectric or conductor would fall under the non-specular classification and

hence be treated analogously to a diffuse material, preventing the associated

paths from being explored effectively.

Unlike many methods for caustics and other specular phenomena, we

showed that Manifold Exploration generalizes almost trivially to handle glossy

surfaces and volumes that fall in between the two extremes of being diffuse and

ideally specular. Similar refinements can let the same method handle perfectly

anisotropic reflections, strongly oriented volume scattering media, and other

kinds of problems with exactly or approximately constrained paths.

With minimal modifications to the implementation for specular surfaces, we

thus also obtained a powerful new set of tools for rendering very challenging

classes of light paths involving glossy materials. The end result was a Markov

Chain Monte Carlo algorithm to compute lighting through very general families

of paths that could involve arbitrary combinations of specular, near-specular,

glossy, and diffuse surface interactions as well as isotropic or highly anisotropic

volume scattering interactions. In equal-time comparisons on very challenging

scenes, the methods proposed in this thesis compared favorably to previous

work in Monte Carlo and MCMC rendering.
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This new algorithm does still share certain limitations with its predecessors.

Most importantly, it needs well distributed seed paths, because it can only ex-

plore connected components of the manifold for which seed paths are provided.

Bidirectional Path Tracing is reasonably effective but still has trouble finding

many components of path space, and this problem fundamentally becomes

more and more difficult as their number increases. Ultimately, as the number of

components exceeds the number of samples that can be generated, local explo-

ration of path space becomes ineffective; future algorithms could be designed

to attempt exploration only in sufficiently large path space components.

While MCMC rendering is a natural match for our methods of dealing

with specular paths, their generality suggests interesting future applications,

including purely deterministic ones. Other fields also depend on the ability

to map out specular paths, for instance in the design of luminaires or optical

systems, and the manifold walking algorithm may prove useful in this context.
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APPENDIX A1: SPECULAR PROBABILITY FUNCTIONS

This appendix describes two specular probability functions introduced in Sec-

tions 6.2 and 7.

Specular probability function for surfaces: We found the following heuristic

based on microfacet theory to work well: when the microsurface normals at xi

follow a distribution Dα(mi) with roughness parameter α, the BSDF at xi will

take on small values when mi moves into a region where Dα(mi) has low density.

We thus set ψ(xi) by computing the expected probability that treating vertex xi

as non-specular during a manifold perturbation would move its microsurface

normal mi from a region of high density to one of low density, and we choose

the 90th-percentile to classify the support of Dα into such regions.

90%
percentile

90%
percentile

To obtain the specular probability, our implementations must know the expected

angular change ∆θ of microsurface normals during a perturbation, which is

found by briefly running the Markov chain before rendering starts. During

rendering, ψ(xi) is computed as the area ratio of the two highlighted regions on

the sphere:

ψ(xi) =
1− cos θq(α(xi))

1− cos
(
θq(α(xi)) + ∆θ

) , (9.1)

where θq is the aforementioned percentile (with q set to 0.9). For the Beckmann

distribution, this is given by

θq(α) := tan−1(−α2 log(1− q)).
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Implementation-wise, this heuristic requires material models to be able to

compute their Beckmann distribution-equivalent roughness or provide a custom

quantile function.

Specular probability function for participating media: In the medium case,

we use the same probability (9.1), but now with a percentile that is suitable for

volumetric scattering. For media using the Henyey-Greenstein phase function,

this percentile is given by

θq(g) = cos−1 (1+|g|)2−2(1+|g|)(1+g2)q+2|g|(1+g2)q2

(1+|g|−2|g|q)2

where g is the mean cosine of the phase function, and q is set to 0.5. Other kinds

of phase functions are handled by computing their associated mean cosine.

Alternatively, it would also be possible to derive specific quantiles for them.

In ψ(xi) (Equation 9.1) we must also replace ∆θ with the average change in

scattering angle at medium vertices, again determined in a brief phase before

rendering.
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APPENDIX A2: DERIVATIVE COMPUTATION

Let us assume the existence of a Vertex data structure with the following

contents:

struct Vertex {

Point p; // Vertex position

Vector dpdu, dpdv; // Tangent vectors

Normal n; // Normal vector

Vector dndu, dndv; // Normal derivatives

float eta; // Relative index of refraction

Matrix2x2 A, B, C; // Matrix blocks of ∇C in the row

// associated with the current vertex

};

Then the following C++ code computes the derivatives of ∇C associated with a

single surface interaction vertex. It assumes that the function is called with a

pointer into a list of vertices.

void computeDerivatives(Vertex *v) {

/* Compute relevant directions and a few useful projections */

Vector wi = v[-1].p - v[0].p;

Vector wo = v[ 1].p - v[0].p;

float ili = 1/wi.length();

float ilo = 1/wo.length();

wi *= ili; wo *= ilo;

Vector H = wi + v[0].eta * wo;

float ilh = 1/H.length();

H *= ilh;

float dot_H_n = dot(v[0].n, H),

dot_H_dndu = dot(v[0].dndu, H),

dot_H_dndv = dot(v[0].dndv, H),

dot_u_n = dot(v[0].dpdu, v[0].n),

dot_v_n = dot(v[0].dpdv, v[0].n);

/* Local shading tangent frame */

Vector s = v[0].dpdu - dot_u_n * v[0].n;

Vector t = v[0].dpdv - dot_v_n * v[0].n;
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ilo *= v[0].eta * ilh; ili *= ilh;

/* Derivatives of C with respect to x_{i-1} */

Vector

dH_du = (v[-1].dpdu - wi * dot(wi, v[-1].dpdu)) * ili,

dH_dv = (v[-1].dpdv - wi * dot(wi, v[-1].dpdv)) * ili;

dH_du -= H * dot(dH_du, H);

dH_dv -= H * dot(dH_dv, H);

v[0].A = Matrix2x2(

dot(dH_du, s), dot(dH_dv, s),

dot(dH_du, t), dot(dH_dv, t));

/* Derivatives of C with respect to x_i */

dH_du = -v[0].dpdu * (ili + ilo) + wi * (dot(wi, v[0].dpdu) * ili)

+ wo * (dot(wo, v[0].dpdu) * ilo);

dH_dv = -v[0].dpdv * (ili + ilo) + wi * (dot(wi, v[0].dpdv) * ili)

+ wo * (dot(wo, v[0].dpdv) * ilo);

dH_du -= H * dot(dH_du, H);

dH_dv -= H * dot(dH_dv, H);

v[0].B = Matrix2x2(

dot(dH_du, s) - dot(v[0].dpdu, v[0].dndu) * dot_H_n - dot_u_n * dot_H_dndu,

dot(dH_dv, s) - dot(v[0].dpdu, v[0].dndv) * dot_H_n - dot_u_n * dot_H_dndv,

dot(dH_du, t) - dot(v[0].dpdv, v[0].dndu) * dot_H_n - dot_v_n * dot_H_dndu,

dot(dH_dv, t) - dot(v[0].dpdv, v[0].dndv) * dot_H_n - dot_v_n * dot_H_dndv);

/* Derivatives of C with respect to x_{i+1} */

dH_du = (v[1].dpdu - wo * dot(wo, v[1].dpdu)) * ilo;

dH_dv = (v[1].dpdv - wo * dot(wo, v[1].dpdv)) * ilo;

dH_du -= H * dot(dH_du, H);

dH_dv -= H * dot(dH_dv, H);

v[0].C = Matrix2x2(

dot(dH_du, s), dot(dH_dv, s),

dot(dH_du, t), dot(dH_dv, t));

}
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APPENDIX A3: THE SPHERICAL VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher (vMF) distribution [11, 39] is a popular distribution for

statistical inference and many other applications involving directional data. On

the 2-sphere, it is defined as

fvMF(ω) =
κ

4π sinh κ
exp(κµTω) (9.2)

where µ ∈ S2 is the mean direction and κ denotes the concentration parameter

(κ→0 approaching the uniform distribution). A recent application [16] of this

distribution in computer graphics entailed fitting mixture models composed of

vMF functions to arbitrary spherical data using the expectation maximization

procedure. The manifold perturbation discussed in Chapter 6 relies on this

distribution when sampling a perturbed outgoing direction at the vertex xa.

Unfortunately, many basic operations involving this distribution are prone

to severe numerical issues when implemented in finite precision computer

arithmetic. There is a surprising lack on information on how these can be

circumvented, and hence the purpose of this appendix is to serve as a collection

of numerically-well behaved recipes for common operations.

Evaluation

Evaluation of the vMF distribution easily overflows single precision arithmetic

even for moderate concentration values (for instance, sinh 100 = 1.34406 · 1043),

and double precision fails shortly thereafter. The following expression derived

using exponential function identities is equivalent to (9.2) and works reliably
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over a much larger range of concentrations.

fvMF(ω) =


1

4π
, κ = 0

κ

2π(1− exp(−2κ))
eκ(µTω−1), κ > 0

Sample generation

Several prior works have investigated how independent samples can be drawn

so that they are distributed according to the vMF distribution [65, 77, 30]. The

following is a brief summary of [30], which leads to a simple but numerically

ill-behaved method:

Observe that the following random vector with mean direction µ = (0, 0, 1)

is distributed according to fvMF [65]:

ωκ = (
√

1−W2 V, W)T

where V and W are independent random variables, V ∈ R2 is a uniformly

distributed vector on the unit circle, and W ∈ [−1, 1] follows the density

fW(w) =
κ

2 sinh κ
exp(κw).

All that is needed for a computer implementation is a way to generate realiza-

tions of W. Applying the inversion method results in

F−1
W (ξ) = κ−1 log

(
exp−κ +2 ξ sinh κ

)
(9.3)

To handle other values of µ, one can simply apply a rotation to directions

obtained in this manner.
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Numerically stable variant

Again, we can apply exponential function identities to arrive at an expression

that is equivalent to (9.3) and avoids numerical issues for large values of κ:

F−1
W (ξ) = 1 + κ−1

(
log ξ + log

(
1− ξ − 1

ξ
e−2κ

))

Finding κ such that fvMF(µ) = c

One very useful tool is the ability to create distributions that have a specified

solid angle density into a certain direction. In the case of the von Mises-Fisher

distribution, we can see that fvMF takes on its maximum into direction µ, where

g(κ) :=
κ

4π
(1 + coth κ).

gives the maximum as a function of the concentration. Unfortunately, it is

inconvenient to invert this expression analytically. However, note that

coth κ =
e2κ + 1
e2κ − 1

rapidly approaches 1. For instance, coth 5 is already approximately equal to

1.0009. Assuming that there are no particularly stringent accuracy requirements

on the inversion, we can use the following approximate scheme:

g−1(x) ≈


2πx, x > g(5) ≈ 0.795

g−1
rat (x), otherwise

where we have approximated coth κ ≈ 1 for κ > 5 and make use the following

rational interpolant elsewhere:

g−1
rat (x) := max

{
10−5,

168.479x2 + 16.4585x− 2.39942
−1.12718x2 + 29.1433x + 1

}
.

On the interval [1/4π, g(5)], the function g−1
rat has an absolute error of < 0.007
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Figure A3.1: Fit of the rational function g−1
rat (blue) to g−1 (red).

The relative error is infinite, as g−1(x)→ 0 (x→ 1/4π). Figure A3.1 shows an

illustration of the fit.

Convolution

The convolution of two vMF distributions does not generally produce an-

other vMF distribution. However, the result of this operation can be well-

approximated by a vMF distribution with a suitably chosen value of κ. Mardia

and Jupp [39] describe one approach to obtain this parameter, which entails

approximating the distributions to be convolved by wrapped normal distribu-

tions, convolving them instead, and transforming the result back into a vMF

distribution. A C implementation of this is given below:

float A3(float kappa) {

return 1 / std::tanh(kappa) - 1 / kappa;

}

float dA3(float kappa) {

float csch = 2.0f / (std::exp(kappa) - std::exp(-kappa));

return 1 / (kappa*kappa) - csch*csch;

}

float A3inv(float y, float guess) {

/* Initial guess */

float x = guess, residual = 0;
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/* Invert using Newton’s method */

do {

residual = A3(x)-y, deriv = dA3(x);

x -= residual/deriv;

} while (std::abs(residual) > 1e-5f);

return x;

}

float convolve(float kappa1, float kappa2) {

return A3inv(A3(kappa1) * A3(kappa2), std::min(kappa1, kappa2));

}
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APPENDIX A4: IMPLEMENTING PATH-SPACE RENDERING

ALGORITHMS

One of the advantages of path-space rendering algorithms is their ability to

create paths in a large number of different ways due to the flexibility afforded by

this framework. But this feature can also translate into difficulties when going

from an abstract algorithm description to a concrete computer implementation.

Take for instance the innermost loop of a bidirectional path tracer, which is

responsible for establishing connections between pairs of vertices on the light

and camera subpaths. This is a simple operation when only surface interactions

are involved—but in a complete implementation, we will want to be able to

create every possible type of connection between pairs of surface interactions,

participating medium interactions, positions on the camera, and positions on

light sources. In each case, the space between the vertices may be empty or

filled with a participating medium, requiring further special treatment. To make

things more difficult, a single vertex may have several “identities”. For example,

a light source might reflect light in addition to emitting it, hence it can act both

as a light source emission vertex at the end of a path, or as a surface reflection

vertex somewhere in the middle of a path.

Finally, when rendering using path space, it is also important to consider

that path vertices can be created in many different ways: for instance, a light

source vertex can normally result from

1. independently sampling a position on a light source,

2. sampling a position on the light source given the position of some other

vertex that should receive light (direct illumination sampling), or

3. intersecting a light source by chance during a random walk,
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and similar holds true for the other vertex types. The available sampling

strategies tend to have different density functions over their domain and must

therefore be distinguished during computation. More involved algorithms like

MLT and MEPT add further sampling strategies that operate by perturbing the

state of an existing vertex. Given this plethora of possible vertex combinations,

sampling strategies, and other special cases, it is clear why implementing such

a system can be a daunting proposition.

While implementing prior work and our new method in Mitsuba, we found

it crucial to design mutations and perturbation rules at a high level of abstrac-

tion to reduce the number of special cases to a minimum, and to allow the

implementation code and algorithm pseudocode to look as similar as possible.

Consider the example of a mutation that generates a new vertex by tracing a

ray (xi, ω) from a vertex xi and intersecting it with the scene geometry, while

keeping track of the amount of light throughput along the new path segment. In

this case, there is no reason why the mutation’s code should have to deal with

the large number of possible cases, when this could also be moved into a generic

object-oriented operation in the style of “xi+1 = xi.Sample(ω)” that is oblivious

to whether xi is, e.g., a camera or a medium interaction. For this reason, we

prefer to move any such complexity into a special path space abstraction layer,

which exposes the entire rendering system in the form of generic path edges

and vertices. We reused this abstraction layer in our implementations of BDPT,

PSSMLT, MLT, ERPT, MEPT, and MEMLT and found that this greatly simplified

the effort of developing them.

In this system, the edges of a path represent transport, and the vertices

represent both scattering interactions and the endpoints of the path. The data

structures associated with edges and vertices store all relevant information that
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is needed to fully characterize their behavior at runtime—in particular, they

record the associated terms of f j (Figure 3.4) and cache other important data,

such as information about the differential geometry of surfaces or the local

medium properties.

Vertices have the capability of sampling a successor edge (e.g. by choosing

a scattered direction from a material model), and edges have the capability

of sampling a successor vertex (e.g. by finding an intersection with the scene

geometry or generating a medium scattering event). A random walk, as it is

needed for instance by BDPT, is then realized by an iteration that alternately

samples edges and vertices.

Following Veach, we separate the emission and response profile of the

camera and light sources into their spatial and directional components so that

they can be sampled independently from one another. In our system, we

found it convenient to implement this approach by representing the camera

and light source using two vertices each. The first and last vertex of a path

are stateless pseudo-vertices (referred to as “supernodes” in our system) that

are not associated with any position in the domain—their only purpose is to

encapsulate the operation of choosing a position on a light source or on the

camera aperture in the form of a sampling operation that creates a successor

vertex of a supernode. A further sampling operation on this successor vertex

then selects the outgoing direction from the light source or camera. The smallest

path that is possible in our system directly connects a light source to a camera

and has four vertices. With these extra vertices, the light source and camera lose

their special role in the implementation of mutators and perturbations; for the

most part, they act just like any scattering interaction, which helps to further

cut down on the number of special cases.
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Emitter
supernode

Emitter
node

Sensor
node

Surface
interaction

Sensor
supernode

type=intersection
specular=false

shape plugin
<differential geometry>

bsdf plugin
<cached BSDF data>

type=medium
medium plugin
<cached medium data>

trimesh.so

homogeneous.so

diffuse.so

(b) Representation in our system

(a) Example path

Figure A4.1: This illustration shows a simple direct illumination path and the corre-
sponding representation in our path space abstraction layer. The vertex
and edge data structures (blue) store useful related information, such
as the associated plugins (green), the current participating medium, or
differential geometry information about an intersection.
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We chose to build our system abstraction on top of the Mitsuba renderer [25],

a modular physics-based renderer that was, however, not originally designed to

accommodate path space rendering techniques. In Mitsuba, each “ingredient” of

a scene, such as a camera, a shading model, or a geometric shape, is represented

by an external plugin that is loaded at runtime. All plugins of the same type

communicate with the renderer through a consistent interface, but this interface

varies e.g. between BSDFs and phase functions. The abstraction layer thus has to

keep track of which plugins are responsible for an edge or vertex and translate

high level path space operations into the lower level operations provided by the

individual plugins. Figure A4.1 relates an example path to its representation in

our system. Altogether, the following types of vertices are used:

Emitter supernode: The emitter supernode is always the first vertex on a path.

Generating a successor vertex causes the renderer to pick a light source

and a position on it using the implemented importance sampling scheme,

and the resulting data is stored in a newly created emitter node. This vertex,

and the edge connecting it to the emitter node, are both stateless.

Sensor supernode: The sensor supernode is always the last vertex on a path.

Generating a successor vertex causes the renderer to pick a position on

the aperture of the camera, and the resulting information is stored in a

newly created sensor node. This vertex, and the edge connecting it to the

sensor node, are both stateless.

Emitter node: An emitter node corresponds to a point located on a light source.

Generating a successor vertex causes the renderer to importance sample a

direction with respect to emitted radiance, after which it traces a ray in

the associated direction. Upon success, this either leads to a surface or a

medium interaction vertex.
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Sensor node: A sensor node corresponds to a point located the aperture of a

camera. Generating a successor vertex causes the renderer to importance

sample a direction with respect to emitted importance, after which it

traces a ray in the associated direction. Upon success, this either leads to a

surface or a medium interaction vertex.

Surface interaction: This vertex stores all information pertaining to a scattering

event located on a surface. Generating a successor vertex causes the

renderer to pick a direction according to the surface’s BSDF, after which it

either generates another surface or a medium interaction vertex.

Medium interaction: This vertex stores all information pertaining to a scatter-

ing event located somewhere inside a participating medium. Generating a

successor vertex causes the renderer to pick a direction according to the

medium’s phase function, after which it either generates another medium

or a surface interaction vertex.

Our abstraction supports the following key methods on the vertices:

1. ei, xi+1 = SampleNext(xi−1
ei−1−−→ xi)

Given two preceding vertices and an edge between them, this operation

samples a successor edge and vertex. Internally, this operation invokes

the importance sampling scheme associated with the scattering model,

camera response profile, or light source emission profile that underlies the

vertex xi.

When the new edge ei passes through a participating medium, the medium’s

importance sampling code determines whether the vertex xi+1 is a volume

scattering interaction or a point on a surface.
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2. Eval(xi−1
ei−1−−→ xi

ei−→ xi+1)

Given three adjacent vertices, this function evaluates the part of the mea-

surement contribution function (3.13) that is associated with the middle

vertex xi. A similar function also exists for edges.

3. EvalPdf(xi−1
ei−1−−→ xi

ei−→ xi+1)

This function computes the area density that SampleNext produces on

the vertex xi+1 when invoked with the path segment xi−1
ei−1−−→ xi.

4. Perturb(xi−1
ei−1−−→ xi

ei−→ xi+1, ω)

This function perturbs the outgoing direction along the path segment

xi→xi+1. Similar perturbation operations also exist to adjust the position

on the light source or camera aperture, or the length of medium edges.

5. x′i = Cast(xi, 〈desired type〉)

Sometimes, vertices must be cast into a different type. Consider the

hypothetical example that the vertex x2 in Figure A4.1 lies on a light

source that emits and reflects light. A bidirectional mutation [70] might

cut out x1 from the path and reconnect the two resulting subpaths, in which

case x2 shifts to the position 1 and becomes the emitter associated with

the current path. In this case, this function is used to cast the vertex into

an emitter node, which fails when such a reinterpretation is not possible.

Cast is internally used by the Connect method whenever necessary.

6. ei = Connect(xi−1
ei−1←→ xi xi+1

ei+1←→ xi+2)

This function joins two disconnected subpaths created using arbitrary

sampling techniques. It verifies that there is nonzero throughput between

xi and xi+1 and returns a new connection edge. Any cached data in the

vertices that may have changed due to the connection is also updated.
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In bidirectional rendering algorithms that sample light paths starting both

from the light source and from the camera, it is important to keep track of

certain non-symmetries in scattering models, which Veach [66] discusses in

detail. All of the above functions are aware of these non-symmetries: depending

on the indicated direction of transport, they appropriately query or sample the

standard version, or the adjoint of the associated scattering models.

With this framework in place, most path space rendering methods turn

into simple sequences of these operations. For instance, our implementation

of BDPT creates two subpaths that initially only contain endpoint supernodes,

and repeatedly calls the SampleNext operation to perform two random walks.

Following this, the Connect function is invoked on every pair of vertices from

the two subpaths, and their contribution is recorded upon success. This involves

querying the measurement contribution function via Eval and the sampling

density via EvalPdf to compute multiple importance sampling weights.

Currently, our system simulates surface and volumetric scattering but does

not support some other types of transport like Bidirectional Surface Scattering

Distribution Functions (BSSRDFs) [46]; these are a popular way of summarizing

the aggregate effects of volumetric scattering that occurs in an object. Simulating

subsurface scattering using BSSRDFs is often considerably faster than doing

so using the radiative transfer equation (usually also involving some loss of

accuracy). However, such forms of scattering could be incorporated into our

system by adding another type of edge that describes subsurface transport. We

leave such extensions for future work.

The abstraction layer, as well as our implementations of prior work and the

proposed methods are available in Mitsuba as of October 1, 2012. It is hoped that

they will facilitate future research involving path space rendering techniques.
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[44] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental analysis
of BRDF models. In Proceedings of the Eurographics Symposium on Rendering,
pages 117–226. Eurographics Association, 2005.

[45] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically
based modeling and animation of fire. ACM Transactions on Graphics,
21(3):721–728, 2002.

[46] United States. National Bureau of Standards and Fred Edwin Nicodemus.
Geometrical considerations and nomenclature for reflectance, volume 160. US
Department of Commerce, National Bureau of Standards Washington, D.
C, 1977.

[47] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light trans-
port for participating media. In Rendering Techniques 2000: 11th Eurographics
Workshop on Rendering, pages 11–22, June 2000.

[48] Matt Pharr. Monte Carlo Ray Tracing, Course notes, chapter 9. In ACM
SIGGRAPH, 2003.

135



[49] Matt Pharr and Greg Humphreys. Physically based rendering: From theory
to implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

[50] A. J. Preetham, Peter Shirley, and Brian Smits. A practical analytic model for
daylight. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’99, pages 91–100. ACM Press/Addison-
Wesley Publishing Co., 1999.

[51] R.W. Preisendorfer. Hydrologic optics. US Department of Commerce, 1976.

[52] Simon Premoze, Michael Ashikhmin, and Peter Shirley. Path integration
for light transport in volumes. In Eurographics Symposium on Rendering:
14th Eurographics Workshop on Rendering, June 2003.

[53] G.O. Roberts, A. Gelman, and W.R. Gilks. Weak convergence and optimal
scaling of random walk Metropolis algorithms. The Annals of Applied
Probability, 7(1):110–120, 1997.
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