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Figure 1: Two views of an interior scene with complex specular and near-specular transport, rendered using manifold exploration path
tracing: (a) Refractive, reflective, and glossy tableware, (b) A brass luminaire with 24 glass-enclosed bulbs used to light the previous closeup.

Abstract

It is a long-standing problem in unbiased Monte Carlo methods for
rendering that certain difficult types of light transport paths, par-
ticularly those involving viewing and illumination along paths con-
taining specular or glossy surfaces, cause unusably slow conver-
gence. In this paper we introduce Manifold Exploration, a new
way of handling specular paths in rendering. It is based on the idea
that sets of paths contributing to the image naturally form manifolds
in path space, which can be explored locally by a simple equation-
solving iteration. This paper shows how to formulate and solve
the required equations using only geometric information that is al-
ready generally available in ray tracing systems, and how to use this
method in in two different Markov Chain Monte Carlo frameworks
to accurately compute illumination from general families of paths.
The resulting rendering algorithms handle specular, near-specular,
glossy, and diffuse surface interactions as well as isotropic or highly
anisotropic volume scattering interactions, all using the same fun-
damental algorithm. An implementation is demonstrated on a range
of challenging scenes and evaluated against previous methods.
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1 Introduction

Certain classes of light paths have traditionally been a source of
difficulty in conducting Monte Carlo simulations of light transport.
A well-known example is specular-diffuse-specular paths, such a
tabletop seen through a drinking glass sitting on it, a bottle contain-
ing shampoo or other translucent liquid, or a shop window viewed
and illuminated from outside. Even in scenes where these paths do
not cause dramatic lighting effects, their presence can lead to unus-
ably slow convergence in renderers that attempt to account for all
transport paths.

Furthermore, wherever ideally specular paths are troublesome,
nearly specular paths involving glossy materials are also trou-
blesome. They can be more problematic, in fact, because they
elude special mechanisms designed to handle specular interactions.
These glossy paths have become more important as material mod-
els have evolved, and we would prefer to handle them using natural
generalizations of strategies for specular surfaces, rather than gen-
eralizations of strategies for diffuse surfaces.

Finding these paths efficiently is a key problem of light transport
simulations. In this paper, we show how a Markov Chain Monte
Carlo method can be used to efficiently render paths with illumina-
tion and/or viewing through arbitrary chains of specular or glossy
reflections or refractions. The idea is that sets of paths contributing
to the image naturally form manifolds in path space, and using a
simple equation-solving iteration it is easy to move around on these
manifolds. We show how to formulate and solve the equations re-
quired to find specular paths, using only geometric information that
is already generally available in ray tracing systems. This solu-
tion method is then used to define a Markov Chain, which has the
right properties to be applied in a Metropolis-Hastings algorithm
to compute lighting through very general families of paths that can
involve specular, near-specular, glossy, and diffuse surface interac-
tions as well as isotropic or highly anisotropic volume scattering
interactions.

We begin by discussing prior work on which our method is built,
then in Section 3 we develop the theory of the specular manifold,
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used to handle interactions with ideal specular (polished) surfaces,
and offset specular manifolds, which provide a graceful general-
ization to near-specular materials. In Section 5, we derive an al-
gorithm to move from one path to another on a specular or off-
set specular manifold, use it to build an algorithm that generates
Markov sequences in path space, and show how this can be used in
the Metropolis Light Transport or Energy Redistribution Path Trac-
ing frameworks to provide methods for rendering scenes with any
kind of light transport. We go on in the following sections to extend
the theory and algorithm to the case of participating media, and we
finish by showing results and comparisons in Section 7.

2 Prior work

Simulating light transport has been a major effort in computer
graphics for over 25 years, beginning with the complementary ap-
proaches of finite-element simulation, or radiosity [Goral et al.
1984], and ray-tracing [Whitted 1980]. The introduction of Monte
Carlo methods for ray tracing [Cook et al. 1984], followed by Ka-
jiya’s formulation of global illumination in terms of the Rendering
Equation [Kajiya 1986], established the field of Monte Carlo global
illumination. Unbiased sampling methods, in which each pixel in
the image is a random variable with an expected value exactly equal
to the solution of the Rendering Equation, started with Kajiya’s
original path tracing method and continued with bidirectional path
tracing [Lafortune and Willems 1993; Veach and Guibas 1994], in
which light transport paths can be constructed partly from the light
and partly from the eye, and the seminal Metropolis Light Trans-
port [Veach and Guibas 1997] algorithm, which uses bidirectional
path tracing methods in a Markov Chain Monte Carlo framework.

Various two-pass methods use a particle-tracing pass that sends en-
ergy out from light sources in the form of “photons” that are traced
through the scene [Shirley et al. 1995; Jensen 1996; Walter et al.
1997]. and stored in a spatial data structure. The second pass then
renders the image using ray tracing, making use of the stored par-
ticles to estimate illumination by density estimation. [Jensen and
Christensen 1998; Jarosz et al. 2008; Hachisuka and Jensen 2009].

Photon mapping and other two-pass methods are characterized by
storing an approximate representation of some part of the illumina-
tion in the scene, which requires assumptions about the smoothness
of illumination distributions. On one hand, this enables rendering
of some modes of transport that are difficult for unbiased methods,
since the exact paths by which light travels do not need to be found;
separate paths from the eye and light that end at nearby points suf-
fice under assumptions of smoothness. However, this smoothness
assumption inherently leads to smoothing errors in images: the re-
sults are biased, in the Monte Carlo sense. Glossy-glossy transport,
without a sufficiently diffuse surface on which to store photons, is
challenging to handle with photon maps, since large numbers of
photons must be collected to adequately sample position-direction
space. Some photon mapping variants avoid this by treating glossy
materials as specular, but this means that the the resulting method
increasingly resembles path tracing as the number of rough surfaces
in the input scene grows.

2.1 Specular reflection geometry

Separate from work on global illumination algorithms, various re-
search has examined the properties of specular reflection paths.
Mitchell and Hanrahan [1992] devised a method to compute irra-
diance from implicitly defined reflectors, using Fermat’s principle
with interval Newton’s method to locate all reflection paths from a
source to a point. Walter et al. [2009] proposed a related method
that computes the singly scattered radiance within a refractive ob-
ject with triangle mesh boundaries. Like these works, our method

searches for specular paths. But because it does so within the neigh-
borhood of a given path, it avoids the complexities and constraints
entailed by a full global search. Another difference is that our mani-
fold formalism can be used to build a fully general rendering system
that is not limited to the specular paths that prompted its design.

The widely used method of ray differentials for texture antialias-
ing [Igehy 1999] also reasons about the local structure of a set of
reflected paths—in this case, paths from the eye. Igehy’s approach
requires elementary local differential information only, in the form
of derivatives of surface normals, and does not require global sur-
face descriptions as Mitchell and Hanrahan’s method does. Mani-
fold exploration requires the same geometric information, and can
thus be implemented in most modern ray tracing sytems.

The analysis of reflection geometry presented by Chen and
Arvo [2000a; 2000b] is closest to the mathematics underlying our
proposed methods. Their work relies on a characterization of spec-
ular paths via Fermat’s principle, which asserts that light travels
along paths whose optical length (i.e. the propagation time) consti-
tutes a local extremum amongst neighboring paths. Using Lagrange
multipliers, the authors derive a path Jacobian and path Hessian
with respect to perturbations of the endpoint of a path and use it to
accelerate the interactive display of reflections on curved surfaces.

Our local characterization of specular paths is equivalent to Fer-
mat’s principle, and the path Jacobian is related to the derivatives
that we propose to use to define tangent spaces to the specular man-
ifold while solving for path transitions. However, the use of this
derivative and the goals of the research are entirely different: in
their case, estimating changes to viewing paths, and in our case,
tracking the evolution of specular paths in a very general context,
as part of an unbiased rendering system.

A less related but relevant idea is integrating over continuous paths
in volume rendering applications, known as the path integral for-
mulation of radiative transfer [Premoze et al. 2003]. This work,
with its implications for the concentration of transport in path space,
suggests the possibility of using MCMC to integrate over multiple-
scattering paths in volumes, as discussed in Section 6.

2.2 Markov Chain Monte Carlo in rendering

The Metropolis Light Transport algorithm mentioned above intro-
duced the tools of Markov Chain Monte Carlo (MCMC) to ren-
dering. A Markov chain is a sequence of points in a state space
in which the probability of a state appearing at a given position in
the sequence depends only on the previous state. The basic idea of
MCMC, first proposed by Metropolis et al. [1953], is to define a
Markov chain that has the function to be integrated as its station-
ary distribution, meaning that if the chain is run for a long time
the distribution of states it visits will be proportional to the desired
distribution. The following brief introduction follows [Liu 2001].

Defining a Markov chain amounts to defining a transition rule: a
process for selecting a new state x+ randomly, in a way that de-
pends on the current state x. Metropolis et al. provided a way to
take a transition rule that may not produce the desired stationary
distribution π(x) and turn it into one that does. Given a method
for sampling a proposal distribution T (x,x′), the Metropolis tran-
sition rule operates in two steps:

1. Choose x′ according to the probability distribution T (x,x′).

2. x+ =

{
x′ with probability min(1, π(x′)/π(x))

x otherwise

In step 1 we say x′ is proposed as the next state, and in step



2 it is either accepted and becomes the next state, or it is re-
jected and the next state repeats the previous one. The probability
min(1, π(x′)/π(x)) is known as the acceptance probability.

If this chain is able to pass from any state in the domain to another
using a finite expected number of steps, and if the length of this
journey is in a sense “irregular” (i.e. aperiodic), it is referred to
as ergodic, and the chain’s limiting distribution is guaranteed to
converge to π. This relatively mild criterion is usually satisified by
choosing a transition rule with global support.

The original Metropolis algorithm only works when T (x,x′) =
T (x′,x). Hastings [1970] proposed a new acceptance probability:

r(x,x′) = min

{
1,
π(x′)T (x′,x)

π(x)T (x,x′)

}
(1)

which relaxes the symmetry restriction to one of symmetric sup-
port: T (x,x′) must be nonzero exactly when T (x′,x) is nonzero.
The Metropolis–Hastings algorithm is the starting point for MCMC
rendering methods.

In the rendering context, the state space is the space of all paths
through the scene, points in the space are paths, and the desired
probability distribution over paths is proportional to their contribu-
tion to the rendered image (i.e. the amount of illumination they
carry to the camera). The final image is the projection of the path
distribution into the image plane.

At the core of an MCMC rendering algorithm is an implementation
of a transition rule, and any rule with symmetric support is admis-
sible. But to avoid very low acceptance probabilities, which lead
to poor performance, it is desirable for the transition probability to
approximate the contribution: that is, paths with more light flowing
along them should be chosen more often. Veach’s [1997] transition
rule is based on a set of mutations that change the structure of the
path and perturbations that move the vertices by small distances
while preserving the structure, both using the building blocks of
bidirectional path tracing to sample paths. Using his transition rule
to run long chains leads to the Metropolis Light Tranport algorithm
(MLT). Kelemen et al. [2002] later proposed a transition rule based
on changing the random numbers used to sample paths by bidirec-
tional path tracing.

Considerable research activity has extended Metropolis light trans-
port in various ways. Pauly et al. [2000] proposed a perturba-
tion rule for rendering participating media with single scattering.
Other projects include Metropolis Instant Radiosity [Segovia et al.
2007], Population Monte Carlo rendering [Lai et al. 2007], and
Replica Exchange light transport [Kitaoka et al. 2009]. Recently,
two groups [Chen et al. 2011; Hachisuka and Jensen 2011] have
combined the transition rule of Kelemen et al. with photon map-
ping to obtain robust methods based on density estimation.

However, to generate proposals, all of these algorithms ultimately
rely on local path sampling strategies (i.e. path tracing). Specifi-
cally, they choose the next interaction vertex along a light path by
sampling from a directional distribution associated with the current
vertex, followed by an intersection search. Our method introduces
a new kind of transition rule with different properties.

The original MLT algorithm and subsequent variants all render an
image by running a Markov chain for a long (e.g. > 106) sequence
of steps, and they guarantee ergodicity using a transition rule that
can generate any path in the domain with some probability. The
Energy Redistribution path tracing (ERPT) technique [Cline et al.
2005], which is readily adapted to work with our method, is an
interesting departure from that approach. It draws on the property
that the Metropolis-Hastings algorithm (1) preserves the stationary

distribution of samples even if the underlying transition rule is not
ergodic (e.g. when it cannot reach parts of path space). To obtain
coverage, ERPT first samples a large set of paths via path tracing
and runs Markov chains for short bursts (≈ 103 steps) starting at
each sample. The relaxation of the ergodicity requirement makes it
possible to explore paths in a very local fashion.

3 Path space manifolds

Manifold exploration is a technique for integrating the contribu-
tions of sets of specular or near-specular illumination paths to the
rendered image of a scene. The general approach applies to surfaces
and volumes and to ideal and non-ideal (glossy) specular surfaces.
In this section we begin by examining the manifold defined by ideal
specular reflection or refraction, in the setting of surfaces without
participating media. In the following section we develop this the-
ory into a rendering method for scenes combining ideal specular
surfaces with fairly diffuse surfaces. We will then go on to gener-
alize the method to glossy surfaces, then to generalize the theory to
encompass participating media and to extend the method to handle
media with both isotropic and highly directional scattering.

3.1 Path space

The resulting techniques are all based on the path integral formu-
lation of light transport, described by Veach [1997] and others, in
which the value of each pixel in the image is an integral of a contri-
bution function over path space. Denoting the union of all surfaces
in the scene byM, each sequence x1 . . .xn of at least two points
inM is a path along which light may travel. Thus path space is

P =

∞⋃
n=2

Pk (2)

Pn = {x1 . . .xn | x1, . . . ,xn ∈M} . (3)

As detailed by Veach, the value of pixel j is

Ij =

∫
P
fj(x̄)dµ(x̄)

where x̄ = x1 . . .xn denotes an element of P and µ is the product
measure derived from the area measure on M. The contribution
function fj is a product of terms, one for each vertex and each edge
of the path:

fj(x1 · · ·xn) = Le(x1→x2)[
n−1∏
k=2

G(xk−1 ↔ xk) fs(xk−1→xk→xk+1)

]
G(xn−1 ↔ xn)W (j)

e (xn−1→xn). (4)

Here Le is emitted radiance, W (j)
e is importance for the jth pixel,

fs is the BSDF at xk for the geometry defined by xk−1, xk, and
xk+1, and G is the geometry factor:

G(x↔ y) =
|N(x) · −→xy| |N(y) · −→yx|

‖x− y‖2 V (x↔y) (5)

where N(a) is the surface normal at a and V (x↔y) is the visibil-
ity function.

3.2 Motivating examples

This formulation is the basis for several rendering methods includ-
ing bidirectional path tracing and Metropolis light transport. How-
ever, in the presence of ideal specular reflection, some difficulties



arise, which are normally sidestepped in the transition from theory
to algorithm, but which we prefer to confront directly. When some
surface interactions are specular, the entire contribution to the path
space integral is from paths that obey specular reflection or refrac-
tion geometry, and the set of such paths is lower in dimension than
the full path space. For instance, consider a family of paths of the
form LDSDE (in Heckbert’s [1990] notation) with one specular re-
flection vertex. These paths belong to the P5 component of P , but
the paths that contribute all have the property(−−−→x3x2 +−−−→x3x4

)
‖ N(x3),

that is, the half-vector at x3 is in the direction of the normal. This
places two constraints on the path, meaning that all contributing
paths lie on a manifold of dimension 8 embedded in P5, which is
of dimension 10. The integral is more naturally expressed as an
integral over the manifold, rather than as an integral over the whole
path space.

To compute illumination due to specular paths, we use a local pa-
rameterization of the manifold in terms of the positions of all non-
specular vertices on the path:∫∫∫∫

M4

f(x1 . . .x5)dx1dx2dx4dx5

Note the missing integral over x3, the specular vertex. The contri-
bution function f still has the same form, a product of terms cor-
responding to vertices and edges of the path, but the BSDF values
at the specular vertex are replaced by (unitless) specular reflectance
values, and the geometry factors for the two edges involving the
specular vertex are replaced by a single generalized geometry fac-
tor that we will denote G(x2↔x3↔x4).

The standard geometry factor for a non-specular edge is the deriva-
tive of projected solid angle at one vertex with respect to area at the
other vertex, and the generalized geometry factor is defined anal-
ogously: the derivative of solid angle at one end of the specular
chain with respect to area at the other end of the chain, considering
the path as a function of the positions of the endpoints. Figure 3
illustrates this for a more complex path involving a chain of three
specular vertices. We will explain below how G can be easily com-
puted from the differential geometry of the specular manifold.

This generalized geometry factor is related to the “extended form
factor” discussed by Sillion and Puech [1989].

3.3 Specular manifold geometry

In the general case, each path of length k belongs to a class in
{D,S}k based on the classification of each of its vertices. (In this
scheme point or orthographic cameras, and point or parallel lights,
are denoted S, while finite-aperture cameras and area lights are D.)
Each S surface vertex has an associated constraint that involves its
position and the position of the preceding and following vertices:

ci(xi−1,xi,xi+1) = 0

The constraint function computes a half-vector at vertex i and
projects it into the shading tangent space; the resulting 2-vector is
zero when the half-vector is parallel to the normal. By making use
of the generalized half-vector of Walter et al. [2007], both reflection
and refraction can be handled by a single constraint function:

ci(xi−1,xi,xi+1) = T (xi)
Th(xi,

−−−−→xixi−1,
−−−−→xixi+1) (6)

h(x,v,w) =
η(x,v)v + η(x,w)w

‖η(x,v)v + η(x,w)w‖ (7)

D S

S

Figure 3: The geometry factor (left) and the generalized geometry
factor (right) are both derivatives of projected solid angle at one
end with respect to area at the far end.

where T (x) is a matrix whose columns form a basis for the shading
tangent plane at x, and η(x,v) denotes the refractive index associ-
ated with the ray (x,v).

Specular endpoint vertices also introduce constraints that depend on
their type: for instance, the position of a vertex on a point emitter
must remain fixed (e.g. x1 = const). When the emitter is direc-
tional, it is the outgoing direction that is constrained, and so on.

From now on, we implicitly identify each vertex xi with an asso-
ciated point in IR2 using local parameterizations ofM. These pa-
rameterizations may be defined on arbitrarily small neighborhoods,
since only their derivatives are relevant to what follows.

With this, the constraints for a length-n path with p specular ver-
tices can be stacked together into a function C : IR2n→ IR2p, and
the specular manifold is simply the set

S = {x̄ | C(x̄) = 0} (8)

Expressing S using a constraint in this way makes it convenient to
work with neighborhoods of a particular path. The Implicit Func-
tion Theorem [Spivak 1965] guarantees the existence of a parame-
terization of the manifold, in the neighborhood of any path x̄ that
is nonsingular (in the sense explained below). This parameteriza-
tion is a function q : IR2(n−p)→IR2p that determines the positions
of all the specular vertices from the positions of all the nonspecu-
lar vertices. Furthermore, the derivative of q, which gives us the
tangent space to the manifold at x̄, is simple to compute from the
derivative of C.

For the specifics we restrict ourselves to the case of a single chain
of specular vertices with non-specular vertices (surfaces, cameras,
or light sources) at the ends, which suffices to cover most cases
by applying it separately to mutiple specular chains along a path.
Paths with specular endpoints are handled with simple variations of
this scheme. Number the vertices in the chain x1, . . . ,xk, with x1

and xk being the (non-specular) endpoints of the segment and the
remaining k − 2 vertices being specular. In this case C : IR2k→
IR2(k−2), and the derivative ∇C is a matrix of k − 2 by k 2-by-2
blocks, with a tridiagonal structure (Figure 2).

The Implicit Function Theorem gives us a parameterization of the
manifold in terms of any 2 vertices, and if we pick x1 and xk this
simply says that the path, in a neighborhood of the current path1,
is a function of the two endpoints. Furthermore, it also tells us the
derivative of that parameterization, which is to say, the derivative
of all the specular vertices’ positions with respect to the positions
of the endpoints. If we block the derivative ∇C, as shown in the

1Because it is possible to have several separated specular paths joining
two points, the parameterization cannot be global.
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Figure 2: The linear system used to compute the tangent space to the specular manifold, also known as the derivative of a specular chain
with respect to its endpoints.

figure, into 2-column matrices B1 and Bk for the first and last ver-
tices and a square matrix A for the specular chain, then this tangent
space to the manifold is

TS(x̄) = −A−1 [B1 Bk
]

This matrix is k − 2 by 2 blocks in size, and each block gives the
derivative of one vertex (in terms of its own tangent frame) with
respect to one endpoint.

The matrix A fails to be invertible when the specular vertices are
not even locally unique for given endpoints, which means that one
endpoint is on a caustic for light emitting from the other endpoint.

We use TS(x̄) for two things: to navigate on the manifold and to
compute the generalized geometry factor. The right two or left two
columns of TS(x̄) are useful for updating the specular chain with
x1 or xk held fixed, respectively, as discussed in the next section.

The top-right or bottom-left block of TS(x̄) can be used to compute
the generalized geometry factor as follows. Assuming orthonormal
parameterizations2, the determinant of the top-right block gives the
ratio of an infinitesimal area at xk to its reflection/refraction, as ob-
served from x1, measured on the surface at x2. To convert this to a
ratio of area at xk to solid angle at x1, we multiply this determinant
by the ordinary geometry factor G(x1 ↔ x2); this product is the
generalized geometry factor G(x1↔· · ·↔xk). More succinctly,

G(x1↔· · ·↔xk) =
∣∣P2A

−1Bk
∣∣G(x1↔x2) (9)

=
∣∣Pk−1A

−1B1

∣∣G(xk−1↔xk),

where Pi is a 2 by 2(k − 2) matrix that projects onto the two di-
mensions associated with vertex i. Please see the supplementary
technical report on how to compute TS(x̄) and the generalized ge-
ometry factor for a simple example path.

A useful property of this framework is its reliance on local informa-
tion that is easily provided in ray tracing-based rendering systems.
To compute the blocks of the A and B matrices, we must have ac-
cess to the partial derivatives of position and shading normal with
respect to any convenient parameterization of the surfaces, along
with the refractive indices of all objects. These are exactly the same
quantities also needed to trace ray differentials through refractive
boundaries, which is part of many mature ray tracing-based render-
ing systems. A consequence of the simple form of the constraint (8)
is that our technique works with any object that can provide such
local information, including implicitly defined shapes or triangle
meshes with shading normals.

2If the parameterizations are not orthonormal, two additional determi-
nants are required to account for the change in area.

These theoretical results about the structure of the specular mani-
fold can be used in an algorithm to solve for specular paths, which
we discuss next.

4 Walking on the specular manifold

Our rendering algorithms use MCMC to explore the manifold of
specular paths, and for this they require some form of local param-
eterization. With the differential geometry of the specular manifold
in hand, we are now able to develop this extremely useful building
block. We propose an algorithm that moves one of the endpoints
of a specular chain and takes all the intermediate vertices to a valid
new configuration. Later, in Section 5, we show how to apply this
algorithm to render images.

To simplify the discussion, we will focus on the case where the
position of a vertex xn of a specular chain x1, . . .xn is adjusted
to a given new position x′n, while x1 is held fixed. We shall also
briefly introduce the assumption that xn is located on planar surface
of infinite extent.

Our manifold walking algorithm is based on two key insights:

1. The A and B matrices (Section 3.3) may be used to map an
infinitesimal in-plane movement of xn to displacements of
the vertices x2, . . . ,xn−1. We can use these displacements
to approximate a finite change to the path simply by adding
an offset to each vertex, but this will move the path off the
specular manifold.

2. Ray tracing provides a deterministic means of projecting an
off-specular path back onto the space of valid configurations
based on its first two vertices. Given x1 and x2, we can trace
a sequence of rays xi→xi+1, at each step performing a spec-
ular reflection or refraction, and this leads to corrected posi-
tions x+

2 . . .x
+
n .

By combining 1. and 2., we obtain a predictor-corrector type al-
gorithm (Figure 4) that performs a step according to a local linear
model, followed by a projection that restores the specular config-
uration, resulting in a new path x1,x

+
2 , . . . ,x

+
n , and repeats un-

til convergence. As long as the prediction step solves the linear
model and moves in the tangent space to the manifold, this iteration
behaves like Newton’s method, exhibiting quadratic convergence
near the solution. As with all Newton-like iterations, it is not guar-
anteed to converge when started far from the solution, since the
linear model may not be accurate enough to make progress. But
since the model is first-order accurate, the algorithm is guaranteed
to make forward progress when the constraint function is differen-
tiable and the partial steps are small enough. Our algorithm uses
a simple heuristic to decrease the step size when progress is not
made, then increase back to full steps to get quadratic convergence
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Figure 4: One iteration of updating a path using the specular man-
ifold. (a) The path vertices are modified according to a local linear
model, which (b) corresponds to a step along the tangent plane to
the manifold, then (a) a nearby valid specular path is found, which
(b) corresponds to projecting back onto the manifold.

as it approaches the target configuration. This iteration is illustrated
in Figure 4 and laid out in the following algorithm:

WALKMANIFOLD
(
x1, . . . ,xn  x′n)

1 Set i = 0 and β = 1
2 while ‖xn − x′n‖ > εL

3 p = x2 − β T (x2)P2A
−1BkT (xn)T (x′n − xn)

4 Propagate the ray x1→p through all specular
interactions, producing x+

2 , . . . ,x
+
n .

5 if step 4 succeeded and ‖x+
n − x′n‖ < ‖xn − x′n‖

6 x2, . . . ,xn = x+
2 , . . . ,x

+
n

7 β = min {1, 2β}
8 else
9 β = 1

2
β

10 Set i = i+ 1, and fail if i > N .
11 return x2, . . . ,xn−1

Here, i records the number of iterations until a specified maximum
N is reached, and ε is a relative error threshold to a scene-scale
length L (we use L = maxi ‖xi‖, N = 20 and ε = 10−7). The
variable β denotes a step size that is dynamically adjusted to ensure
that steps reduce the target distance. The pseudocode assumes that
the plane vertex xn has an orthonormal parameterization.

To make this algorithm usable for general specular chains, we must
remove the previous assumption that the endpoint xn is located on
a plane. However, the actual locations of x+

n along the way from
xn to x′n are not needed; all that matters is that x′n is on the surface
at convergence. Therefore, we construct a plane containing xn and
x′n, and in step 4 of WALKMANIFOLD the last propagation step
computes an intersection against this hypothetical plane, ignoring
the actual scene geometry. Once the algorithm converges, we must
ensure that xn−1 and xn are mutually visible before reporting the
manifold walk as successful.

In our implementation, we assign the plane normal using the fol-
lowing symmetric orthogonalization procedure

nplane := γ
(
γ(n + n′)−

−−−→
xnx

′
n〈γ(n + n′),

−−−→
xnx

′
n〉
)

where n and n′ are the surface normals at xn and x′n, respectively,
and γ(v) := v/‖v‖. This ensures that the same plane is used for
walks xn x′n and x′n xn.

To compute the matrix A, we derived symbolic expressions for the
manifold constraints in C (Equation 8). A C++ implementation is
provided in the supplementary technical report. When solving the
resulting linear system in step 3, it is beneficial to exploit the special
structure of this matrix, which becomes important when processing

specular chains with more than about ten vertices. We solve for p
using a block tridiagonal LU factorization, and this reduces the time
complexity from O(n3) to O(n), n being the number of vertices in
the chain.

There are several situations under which this algorithm may fail to
converge: first, a specular path between x1 and x′n need not exist
at all. Secondly, WALKMANIFOLD usually cannot find paths that
lie on a different connected component of the manifold. Thirdly,
when the local structure of the manifold is complex (e.g. due to
high-frequency geometric detail of the reflectors and refractors) and
‖xn−x′n‖ is large, the iteration may not converge to a solution. Fi-
nally, the linear system may not be invertible, which happens when
the last path lies at the fold of a wavefront, e.g. a caustic receiving
an infinite power per unit area. During the ∼ 1012 manifold walks
performed to produce the results of the paper, this last case only
occurred ∼ 1.7 · 105 times, hence it does not appear to be an issue
in practice. However, in the MCMC context it is not an problem for
the iteration to fail occasionally, as explained in the next section.

The manifold walking algorithm works reliably for large chains
with over 10 vertices, especially when it is used by the transition
rule discussed in the next section, which only moves the endpoints
of chains by a small amount. In our scenes, we observe between
92 and 98% successful walks, each taking 2-3 iterations on average
to converge to the tolerance ε = 10−7. The failing 2-8% mainly
contain cases where WALKMANIFOLD failed for good reasons, be-
cause it was asked to walk to a point for which there is no valid
configuration on the manifold.

5 Manifold exploration for surfaces

In this section, we present a new transition rule that proposes steps
in path space using manifold walks. In the context of MCMC,
a transition rule, or perturbation, is a random process that gener-
ates a proposal state conditioned on the current state of a Markov
chain. It provides the basic means of navigating through the state
space, but to do this correctly the rule must satisfy two basic crite-
ria: transitions must be reversible (i.e. return to the previous state
with nonzero probability density), and the rule must also supply a
function that, up to constant factors, computes the probability of
proposals conditioned on the current state.

To create an efficient sampling procedure, a transition rule should
furthermore propose modifications of an appropriate scale. A rule
that takes large steps will tend to leave local maxima of the target
distribution π, and such steps are rejected with high probability. A
rule that takes tiny steps will find most of them accepted, but it will
not explore the state space well. Our perturbation is designed so
that its scale naturally adapts to the scene, including the geometry
and material properties.

The new perturbation supports general scenes and can be used both
with the ERPT algorithm by Cline et al. and the path space MLT
framework proposed by Veach and Guibas, where it replaces and
generalizes the lens, caustic, and multi-chain perturbations. De-
pending on which combination is used, we call the resulting algo-
rithm either Manifold Exploration Path Tracing (MEPT) or Mani-
fold Exploration Metropolis Light Transport (MEMLT).

5.1 Manifold perturbation

Given an input path, the manifold perturbation finds a nearby path
using a sequence of steps that can be grouped into sampling and
connection phases (Figure 5). The sampling phase chooses a sub-
path to be modified that consists of three non-specular vertices
which are potentially separated by specular chains. We shall denote



these non-specular vertices as xa,xb, and xc. After establishing the
type of perturbation to be performed, the sampling step generates
a perturbed outgoing direction at the vertex xa and propagates it
through the specular chain between xa and xb (if any) until arriving
at a new non-specular vertex x′b in the neighborhood of xb. If the
path configuration (i.e. the arrangement of specular and nonspecu-
lar vertices) changed, the perturbation is rejected immediately.

Up to this point, the proposed scheme is similar to the set of per-
turbations proposed by Veach and Guibas. However, recall that in
their work, perturbations must propagate through the path until ar-
riving at a pair of adjacent non-specular vertices (“DD” in Heck-
bert’s [1990] notation) that can be used to establish a connection
edge. Any attempt to connect two sampled subpaths that involves
a specular vertex must fail, since the probability of creating a valid
path in this manner is zero.

In comparison, our perturbation can stop at vertex xb and use
the WALKMANIFOLD algorithm to update the configuration of the
specular chain between xb and xc (Figure 6). This seemingly subtle
difference has major repercussions on the types of scenes that can
be rendered efficiently. In particular, the resulting method can sys-
tematically explore large classes of specular paths instead of having
to rely on finding them by chance.

In the following, we will discuss the perturbation in more detail;
first for the ideally specular case and then in a more general form
that extends to rough surfaces.

Strategy sampling: Motivated by the desire to attempt a large
range of different types of path modifications with high probabil-
ity, the sampling step first chooses among the possible perturbation
strategies for a given path by selecting three vertices as follows.
Given a path x1, . . . ,xk, uniformly select a non-specular initial
vertex xa, as well as a perturbation direction (i.e. towards the light
source or towards the camera). Walk along the path in this direction
until the first non-specular vertex is encountered, and continue until
a second non-specular vertex is found. This path traversal may fail
by walking past the end of the path, in which case the strategy sam-
pling phase is simply restarted from scratch. This determines xa,
xb and xc. For notational convenience, assume that a < b < c.

Perturbation sampling: With the overall strategy established,
the sampling phase now perturbs the path segment xa+1, . . . ,xb.
The goal here is to produce a new subpath x′a+1, . . . ,x

′
b that is

“nearby”. When the vertex xa denotes a surface scattering event
with incident and exitant directions ωi = −−−−→xaxa−1 and ωo =−−−−→xaxa+1, the perturbation determines x′a+1 by tracing a ray in a
direction ω′o that is sampled from a suitable spherical distribution
D(ω′o) concentrated around ωo. It is absolutely critical that this
distribution generates direction changes of the appropriate scale:
for instance, when xa is a diffuse material, relative large perturba-
tions are in order. On the other hand, when xa is a glossy material
that only reflects into a small cone of directions, large perturbations

Sample Connect

Figure 5: The manifold perturbation samples a perturbed outgo-
ing direction from a vertex xa and propagates it through a specular
chain (if any) using ray tracing until arriving at a non-specular
vertex xb. To connect the vertices xb and xc, the perturbation per-
forms a manifold walk to determine the positions of intermediate
specular vertices (if any).
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Figure 6: Manifold perturbation example: a slightly perturbed
outgoing direction at xa is propagated until encountering the non-
specular vertex x′b. Previously, it was not clear how to “connect”
x′b to xc through multiple specular interactions. Our method can
find this connection given knowledge about the previous path.

will almost always be rejected, reducing performance.

Observe that a useful hint about the right scale can be obtained di-
rectly from the scattering model at xa, in particular from the associ-
ated importance sampling density p(ωi→ωo). When this sampling
density is high, ωo is likely located on a sharp peak of the scattering
function, and small steps are appropriate.

Our strategy is to sample from a distribution D(ω′o) centered at ωo
whose concentration is set so thatD(ωo) equals λ2p(ωi→ωo). For
D(ω′o), we use the spherical von Mises-Fisher distribution. The pa-
rameter λ (generally set between 50 and 500) specifies how large
the perturbations are relative to standard BSDF sampling. This is
the main parameter of our technique, and it affects how far perturba-
tions will move in path space. When λ is set to an inappropriately
low or high value, the amount of noise present in the output ren-
derings increases. In the first case, too few mutations are accepted,
causing the chain to become “stuck” in certain paths for many itera-
tions. In the latter case, the steps taken by the chain are too small to
effectively explore path space, and this results in the typical coher-
ent noise patterns that are known from other MLT-type algorithms.
We currently set this parameter manually to achieve a desired ac-
ceptance ratio, but this could in theory be automated using adaptive
MCMC. Please refer to the supplemental material for comparison
involving different values of λ.

When xa is a camera or light source, we choose a new outgoing
direction in much the same way, but query the underlying model
for the directional density of the associated sampling method (e.g.
uniformly choosing pixels in screen-space). To further enlarge the
space of possible perturbations, following Veach, we split camera
and light source endpoints into two separate vertices corresponding
to the position and direction components. When xa is such a posi-
tion vertex, we perturb its location on the aperture or light source by
sampling a tangential displacement from a 2D normal distribution
with variance ρ/(2πλ2), where ρ is the surface area.

After x′a+1 has been determined in this manner, the perturbation
is propagated through the specular chain until reaching x′b. This
process is deterministic.

Connection: When there is no specular chain between x′b and
xc, the connection step only entails checking that the vertices are
mutually visible, and that their scattering models carry illumination
along the connection edge. When there is a manifold, we first set

x′c−1, . . .x
′
b+1 = WALKMANIFOLD(xc, . . .xb→x′b)

and then perform the same verification.



Recall that a key requirement of the Metropolis-Hastings algo-
rithm discussed in Section 2.2 was that a nonzero transition prob-
ability T (x,x′) > 0 also implies that T (x′,x) > 0. This
creates a potential issue when walking on the manifold, because
WALKMANIFOLD can be non-reversible. It might succeed in mov-
ing from x to x′ but fail to move from x′ to x. Even when the
reverse iteration converges, the manifold can contain bifurcations
so that it may converge to a different solution. Therefore, we al-
ways perform another manifold walk in the reverse direction and
reject the perturbation if the path did not return to its original con-
figuration. In the example scenes, we observed between 0% and
0.4% non-reversible walks.

Transition probability computation Finally, the change in the
contribution function is computed and, together with the transition
probabilities, used to randomly accept or reject the proposal with
probability

r(x̄, x̄′) = min

{
1,
fj(x̄

′)T (x̄′, x̄)

fj(x̄)T (x̄, x̄′)

}
(10)

where fj is the contribution function (Equation 4) and x̄ and x̄′,
denote the original and proposal path respectively. Note that many
factors cancel in the above ratio, particularly all of those in fj that
are associated with the unchanged path segment, or common terms
in the transition probability. For instance, the probability of choos-
ing a particular sampling strategy cancels, since it only depends on
the (unchanged) path configuration.

We require that T (x̄, x̄′) and T (x̄′, x̄) express the density of for-
ward and reverse proposals in a common measure. Observe that
sampling an outgoing direction ω′o from D(ω′o) at xa, and prop-
agating it through the first specular chain, produces area den-
sity D⊥(ω′o)G(xa ↔ · · · ↔ x′b) on the surface at x′b (where
D⊥(ω′o) = D(ω′o)/| cos(na, ωo)| denotes probability with respect
to the projected solid angle measure at xa). This is the needed tran-
sition probability T (x̄, x̄′).

In a MCMC-based rendering system, we will generally want to
sample paths based on their contribution to the entire image rather
than to a single pixel. This is accomplished by replacing W (j)

e

in (4) with an importance function that measures the overall lumi-
nance received on the image plane.

5.2 Extension to glossy materials

The method just presented can be used for scenes with both specu-
lar and non-specular transport, and the two classes are treated sep-
arately. This is unfortunate, since a near-specular chain through an
almost-smooth dielectric object cannot be explored as effectively as
a perfectly specular one. However, it turns out that a simple gener-
alization suffices to encompass these materials as well.

The path space integrand corresponding to a chain of glossy interac-
tions has its energy concentrated in a thin “band” near the specular
manifold, and the key idea of how we handle glossy materials is to
take steps along a family of offset manifolds that are parallel to the
specular manifold, so that path space near the specular manifold can
be explored without stepping out of this thin band of near-specular
transport. In this section, we add a simple extension that endows
the perturbation with the ability to walk on offset manifolds and to
recognize when this is appropriate.

For this, we first replace Equation (8) with the offset manifold

So = {x̄ | C(x̄) = o} , (11)
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Figure 7: Perturbation of path with near-specular surface inter-
actions: instead of requiring that the half-vectors agree with the
surface normals, their direction is preserved in the surface frame.

where o captures the offset from ideal specular transport. Inspect-
ing C (Equation 6) yields an intuitive explanation for the contents
of the vector o in terms of microfacet theory. The two entries as-
sociated with each vertex xi record the microsurface normal mi

responsible for the reflection or refraction (which is now different
from the shading normal ni), projected into the shading tangent
space T (xi). Our extended perturbation then preserves the projec-
tion of this microgeometry normal mi as an invariant during the
manifold traversal.

Changes to the manifold perturbation: Since the differential
geometry of the offset manifold is identical to that of the ordinary
manifold, the only required change in WALKMANIFOLD affects the
ray tracing step on line four, where the algorithm now reflects and
refracts using mi instead of ni. Similarly, the deterministic phase
of the manifold perturbation responsible for propagating the sam-
pled direction at xa to a position x′b uses these normals instead.
Note that it is straightforward to handle both cases, near-specular
and specular perturbations, using the same implementation.

Recognizing near-specular transport: An important aspect
about the treatment of general scattering is the decision of whether
the surface associated with a scattering event is “smooth enough” to
be classified as part of a specular chain. We make this decision ran-
domly by assigning a specular probability ψ(xi) to each vertex that
takes on values 0 and 1 when xi is diffuse and specular, respec-
tively, and values in (0, 1) when xi is at a rough interface. This
avoids the issues of “hard” classifications that are commonly used
in rendering algorithms. For specifics on our specular probability
function ψ, please refer to the appendix.

Transition probability: In the glossy case, T is a distribution
on an offset manifold So, whereas fj is defined on the higher-

(a) always non-specular (b) always specular (c) probabilistic

Figure 8: Consistently classifying glossy materials as non-
specular or specular produces unsatisfactory results. Instead, our
method makes this decision randomly whenever encountering a
rough object (modeled after a scene by Cline et al.)



Figure 9: It is possible to extend the path space specular integra-
tion framework to volumes, for instance to render caustics from re-
fractive objects, such as this dodecahedron-shaped luminaire with
tinted glass inlays.

dimensional space
⋃

o So. To compute transition probabilities, we
must perform a change of variables to separate out these “perpen-
dicular” dimensions in fj , and this causes a determinant to appear
in the final transition probability:

T (x̄, x̄′) = Tspec(x̄, x̄
′)

∣∣∣∣∂ [xb,xi1 , . . . ,xik ]

∂ [xb,oi1 , . . . ,oik ]

∣∣∣∣
(1− ψ(xb))(1− ψ(xc)))

c−1∏
i=a+1,i 6=b

ψ(xi). (12)

Here, Tspec is the transition probability of the purely specular case
and the indices i1, . . . , ik ∈ {a+1, . . . , c−1}\{b} refer to glossy
vertices that were classified as specular. The second line accounts
for the discrete probability of performing this classification; rough-
ness values may change during a perturbation, and hence we must
account for them to maintain detailed balance. The determinant is
easy to compute from the entries of A; for details, please refer to
the supplementary material.

6 Manifold exploration for volumes

We have presented Manifold Exploration first in the context of sur-
faces, but the extension to volumes poses no fundamental difficul-
ties. We briefly sketch the required changes to the mathematical
framework, following Pauly et al. [2000]. To our knowledge, no
formal proof of these modifications has been published, and we
therefore include a derivation using a generalized operator theory
for media and surfaces as supplemental material of the paper.

Separate 3-space intoM, the surfaces, and V , the volume between
them, replace the definition in (5) with

G(x↔y) = τ(x↔y)
D(x,y)D(y,x)

‖x− y‖2 (13)

and replace fs in (4) by the function

f̄(z→y→x) =

{
fs(z→y→x) y ∈M
σs(y)fp(z→y→x) y ∈ V

(14)

where D(a,b) = |N(a) ·
−→
ab| if a ∈ M and 1 otherwise. The

function σs(y) denotes the scattering coefficient of the medium at
y, fp is the medium’s phase function, and τ(x ↔ y) is the trans-
mittance between x and y. For more detail on these quantities, refer
to the supplemental material.

The path space over which the contribution function is integrated
now consists of all possible arrangements of surface and medium
vertices in paths of length n. Each component has a measure that
is the Cartesian product of surface area and volume measures at the
vertices. Using this formulation, our implementation can cleanly
abstract away the differences between surface and volume vertices
when operating on paths.

There are no specular reflections per se in the volume, but
from a purely mathematical standpoint the phase function of a
strongly forward-scattering volume is not unlike reflection from a

Figure 10: Medium constraint

rough mirror. The fast-varying part of
the mirror BRDF is a function of the
half-vector, and hence our method pre-
serves it during manifold walks. In the
medium case, we are interested in be-
ing able to handle highly peaked phase
functions that are a function of the scat-
tering angle. For this purpose we treat the scattering angle as analo-
gous to the half vector, introducing the specular manifold constraint

c(xi−1,xi,xi+1) = T (−−−−→xi−1xi)
T−−−−→xixi+1 ( = oi) (15)

where T (v) is a basis for the plane orthogonal to the direction
v (Figure 10). This still leaves one DOF per vertex, which we
remove by preserving the distance to the scattering event (i.e.
‖xi−1 − xi‖ = const.). While computing the entries of the
constraint Jacobian ∇C, we use these two constraints in place of
the previous definition (Section 3.3) whenever a vertex describes a
medium interaction.

6.1 Medium manifold perturbation

From an algorithmic perspective, manifold exploration for volumes
is almost identical to the surface case. Our implementation handles
both cases jointly, which permits constructing specular chains that
contain both surface and medium interactions.

Apart from the new type of constraint (15), the computation of
offset manifold (11) tangent vectors is unchanged. In the ray
tracing step 4 of WALKMANIFOLD when encountering a vertex
xi−1 that is followed by a medium interaction vertex xi, we set
x′i = xi−1 + ‖xi−1 − xi‖d, where d is the outgoing direction
at xi−1 (this enforces the length constraint mentioned earlier). Af-
terwards, the manifold offset oi is transformed into an outgoing
direction in the new frame at x′i (Figure 10).

As in the glossy surface case, we require a criterion that clarifies
when treating a medium vertex xi as non-specular is in order, and
when it is better handled by the manifold. Again, this decision
is made probabilistically, based on a modified specular probability
function ψ(xi) described in the appendix.

When computing the generalized geometric term through a specular
chain with medium endpoints, we consider them to be parameter-
ized on a surface perpendicular to the direction facing the chain.

7 Results

We have implemented the proposed technique and prior work as
extension modules to the Mitsuba renderer [Jakob 2010]. All tech-
niques operate on top of a newly added bidirectional abstraction
layer that exposes cameras, light sources, scattering models, and
participating media as generalized path vertex and edge objects
with a common basic interface. This greatly simplified the imple-
mentation effort, as bidirectional rendering algorithms can usually
be stated much more succinctly in terms of operations on vertices



Scene Seed path generator parameters MEPT parameters Mutations Manifold walks Manifold size

samples / pixel chains / pixel λ total accepted total converged avg. iter. avg. max.

TORUS 32 2 100 1178 M 78.3% 1002 M 96.7% 2.3 3.4 7
CHANDELIER 64 3 160 1216 M 73.6% 975 M 97.6% 2.4 4.6 13
TABLE 32 1 300 1074 M 77.5% 868 M 95.5% 2.8 4.4 14
GLASSEGG 128 2 90 1533 M 72.4% 1246 M 92.2% 3.4 4.1 14

Table 1: Listing of seed generator and perturbation parameters, as well as captured performance statistics.

that are oblivious to whether they contain e.g. a camera model or a
medium scattering event.

We compare the following algorithms:

• Primary sample space MLT by Kelemen et al., implemented
on top of bidirectional path tracing (PSSMLT).

• Path space MLT by Veach and Guibas (MLT).

• An extended form of energy redistribution path tracing by
Cline et al. (ERPT), which is seeded by bidirectional rather
than unidirectional path tracing. The ERPT implementation
shares the caustic, lens, and multi-chain perturbation with the
previous algorithm. Since they introduce bias, we did not use
the post-processing filters proposed in the original paper.

• Manifold exploration path tracing (MEPT), which is struc-
tured similarly to ERPT. We modified the original algorithm
by replacing its highly specialized caustic, lens, and multi-
chain perturbations with the manifold perturbation. Due to its
general design, the new perturbation subsumes and extends
the capabilities of the original set.

Due to the aforementioned abstraction layer, all techniques trans-
parently support participating media even if this was originally not
part of their description. We also implemented Manifold Explo-
ration Metropolis Light Transport (MEMLT), which corresponds
to MLT with our perturbation (i.e. the bidirectional mutation and
manifold perturbation, but none of the original perturbations). We
found that MEPT generally performs better that MEMLT and
therefore do not present results in the main paper. They can be
found in the supplementary technical report along with converged
reference images.

The rendering of result images was conducted on Amazon EC2
cc1.4xlarge instances, which are eight-core Intel Xeon X5570
machines. A single machine was used per image. To exploit the
local parallelism, our implementation runs a separate Markov chain
on each core, and the resulting buffers are averaged together when
exposing the image.

We have rendered three views of a challenging interior scene con-
taining approximately 2 million triangles with shading normals and
a mixture of glossy, diffuse, and specular surfaces and some scat-
tering volumes. One hour of processing time was allocated to each
rendering technique, and a comparison of the resulting images is
shown in Figures 11, 12, and 13. The converged images in Fig-
ure 1 were rendered using 48 hours. The one hour renderings are
intentionally unconverged to permit a visual analysis of the con-
vergence behavior. Table 1 lists parameters and statistics collected
during these renderings. The path generator columns refer to the
seeding scheme used by ERPT and MEPT, which samples and sub-
sequently resamples a number of paths per pixel before launching
Markov Chains. The statistics include the total number of muta-
tions and acceptance ratio, as well as the the convergence behavior
of the manifold walks and vertex count of encountered manifolds.

CHANDELIER: In this set of results, the poor performance of MLT
is most apparent and is caused by the ineffectiveness of the bidi-
rectional mutation in finding long specular paths. Because it must

decide up front on the configuration of a path before generating it,
most of the time the mutation fails, resulting in acceptance rates
under 1%. Consequently, too few jumps between disjoint con-
nected components of path space occur, causing parts of the image
have an incorrect relative brightness. This weakness is inherited by
MEMLT, which also builds upon the bidirectional mutation. Seed-
ing the same perturbations using bidirectional path tracing, which
does not suffer from this disadvantage, performs much better, as
can be seen in the ERPT and MEPT renderings.

TABLE: This scene is lit by the chandelier, with its glass-enclosed
sources, so all illumination is by specular paths. By reasoning
about the geometry of the specular and offset specular manifolds
for the paths it encounters, our perturbation rule is more success-
ful at rendering paths—such as illumination that refracts from the
bulbs into the butter dish, then to the camera (6 specular vertices)—
that the other methods struggle with. The MLT rendering looks too
dark, because it did not find enough of these paths and mainly cap-
tures diffuse illumination from the walls. The noise in the ERPT
result reveals that the underlying bidirectional path tracer encoun-
tered some of those paths but the Veach–Guibas perturbations are
not able to explore path space around them effectively. The primary
sample space MLT variant also has difficulties rendering this scene,
because it has no knowledge about the underlying path geometry.

GLASSEGG: In this scene, our technique’s ability to create a spec-
ular chain containing both medium and surface interactions leads to
fast convergence when rendering the forward-scattering medium in-
side the glass egg. MLT and ERPT perform poorly here, since they
do not have suitable perturbations for exploring this space. Because
the MLT perturbations treat glossy and diffuse materials identically,
they have difficulty rendering the near-specular tabletop, producing
streak-like artifacts in the output rendering.

8 Conclusions

We have presented a new type of Markov Chain Monte Carlo ren-
dering method that models the space of valid specular and near-
specular light paths using high-dimensional manifolds. The dif-
ferential geometry of these manifolds provides a powerful tool to
efficiently explore these paths, which can be very hard for previ-
ous methods to find. Our technique applies in the frameworks of
MLT or ERPT, producing rendering algorithms with support for
specular paths fundamentally built in at the core. In equal-time
comparisons on very challenging scenes, the new Manifold Explo-
ration Path Tracing algorithm compares favorably to previous work
in Monte Carlo and MCMC rendering.

This new algorithm does still share certain limitations with its pre-
decessors. Most important, it needs well distributed seed paths,
because it can only explore connected components of the manifold
for which seed paths are provided. Bidirectional Path Tracing is
reasonably effective but still has trouble finding many components,
and this problem fundamentally becomes more and more difficult
as the number of path types increases. Ultimately, as the number
of different path types exceeds the number of samples that can be
generated, local exploration of path space becomes ineffective; fu-



(a) MLT (b) ERPT

(c) PSSMLT (d) MEPT

Figure 11: CHANDELIER: This view contains a brass chandlier with 24 light bulbs, each surrounded by a glass enclosure. The chandlier
uses a realistic metal material based on microfacet theory and is attached to the ceiling using specular metal cylinders. This scene is
challenging, as certain important light paths are found with low probability, particularly those involving interreflection between the bulbs
and the body of the chandelier. In this and the following comparisons, one hour of processing time was allocated to each rendering technique.

(a) MLT (b) ERPT

(c) PSSMLT (d) MEPT

Figure 12: TABLE: This view of our room scene shows chinaware (using a BRDF with both diffuse and specular components), a teapot
containing an absorbing medium, and a butter dish on a glossy silver tray. Illumination comes from the chandelier in Figure 11.



(a) MLT (b) ERPT (c) PSSMLT (d) MEPT

Figure 13: GLASSEGG: This view of a different part of the room, now lit through windows using a spherical environment map surrounding
the scene, contains a forward-scattering participating medium (g = 0.8) inside the glass egg.

ture algorithms could be designed to attempt exploration only in
sufficiently large path space components.

Unlike many methods for caustics and other specular phenomena,
we have shown how to generalize Manifold Exploration almost triv-
ially to handle glossy surfaces and volumes. Similar refinements
can let the same method handle perfectly anisotropic reflections,
strongly oriented volume scattering media, and other kinds of prob-
lems with exactly or approximately constrained paths.

While MCMC rendering is a natural match for our methods of deal-
ing with specular paths, our predictor-corrector iteration can be
used in other kinds of algorithms as well, including deterministic
ones to map out specular paths, for instance in design of luminaires
or optical systems.
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Appendix

Specular probability function for surfaces: We found the fol-
lowing following heuristic based on microfacet theory to work well:
when the microsurface normals at xi follow a distributionDα(mi)
with roughness parameter α, the BSDF at xi will take on small val-
ues when mi moves into a region where Dα(mi) has low density.
We thus set ψ(xi) by computing the expected probability that treat-
ing vertex xi as non-specular during a manifold perturbation would

move its microsurface normal mi from a region of high density to
one of low density, and we choose the 90th-percentile to classify
the support of Dα into such regions.

90%
percentile

90%
percentile

perturbed by

To obtain the specular probability, our implementations must know
the expected angular change ∆θ of microsurface normals during a
perturbation, which is found by briefly running the Markov chain
before rendering starts. During rendering, ψ(xi) is computed as the
area ratio of the two highlighted regions on the sphere:

ψ(xi) =
1− cos θq(α(xi))

1− cos (θq(α(xi)) + ∆θ)
, (16)

where θq is the aforementioned percentile (with q set to 0.9). For
the Beckmann distribution, this is given by

θq(α) := tan−1(−α2 log(1− q)).
Implementation-wise, this heuristic requires material models to be
able to compute their Beckmann distribution-equivalent roughness
or provide a custom quantile function.

Specular probability function for participating media: In the
medium case, we use the same probability (16), but now with a
percentile that is suitable for volumetric scattering. We use

θq(g) = cos−1 (1+|g|)2−2(1+|g|)(1+g2)q+2|g|(1+g2)q2

(1+|g|−2|g|q)2



where g is the mean cosine of the phase function, q is set to 0.5,
and θq was derived from the Henyey-Greenstein phase function. In
Ψ(xi) (Equation 16) we must also replace ∆θ with the average
change in scattering angle at medium vertices, again determined in
a brief phase before rendering.
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