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1 Introduction

The von Mises-Fisher (vMF) distribution is a popular all-purpose distribution [1, 4] for statistical
inference involving directional data. On the 2-sphere, it is defined as

fvMF(ω) =
κ

4π sinhκ
exp(κµTω)

where µ ∈ S2 is the mean direction and κ denotes the concentration parameter (κ→ 0 approaching
the uniform distribution). A recent application [2] of this distribution in computer graphics entailed
fitting mixture models composed of vMF functions to arbitrary spherical data using the expectation
maximization procedure.

Unfortunately, many basic operations involving this distribution are prone to severe numerical
issues when implemented in finite precision computer arithmetic. There is a surprising lack on
information on how these can be circumvented, and hence the purpose of this document is to serve
as a collection of numerically-well behaved recipes for common operations.

2 Evaluation

Evaluation of the vMF distribution easily overflows single precision arithmetic even for moderate
concentration values (for instance, sinh 100 = 1.34406 · 1043), and double precision fails shortly
thereafter. The following equivalent expression follows from exponential function identities and
works reliably over a much larger range of concentrations:

fvMF(ω) =


1

4π
, κ = 0

κ

2π(1− exp(−2κ))
eκ(µ

Tω−1), κ > 0

3 Sample generation

Several prior works have investigated how independent samples can be drawn so that they are
distributed according to the vMF distribution [5, 6, 3]. The following is a brief summary of [3],
which leads to a simple but numerically ill-behaved method:
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Observe that the following random vector with mean direction µ = (0, 0, 1) is distributed accord-
ing to fvMF [5]:

ωκ = (
√

1−W 2 V,W )T

where V and W are independent random variables, V ∈ R2 is a uniformly distributed vector on
the unit circle, and W ∈ [−1, 1] follows the density

fW (w) =
κ

2 sinhκ
exp(κw).

All that is needed for a computer implementation is a way to generate realizations of W . Applying
the inversion method results in

F−1
W (ξ) = κ−1 log

(
exp−κ +2 ξ sinhκ

)
To handle other values of µ, one can simply apply a rotation to directions obtained in this manner.

3.1 Numerically stable variant

Again, we can apply exponential function identities to arrive at an equivalent and numerically
well-behaved expression, which avoids overflow for large values of κ:

F−1
W (ξ) = 1 + κ−1 log

(
ξ + (1− ξ)e−2κ

)
4 Finding κ such that fvMF(µ) = c

One very useful tool is the ability to create distributions that have a specified solid angle density
into a certain direction. In the case of the van Mises-Fisher distribution, we can see that fvMF

takes on its maximum into direction µ, where

g(κ) :=
κ

4π
(1 + cothκ).

gives the maximum as a function of the concentration. Unfortunately, it is not convenient to
analytically invert this expression for κ. However, note that

cothκ =
e2κ + 1

e2κ − 1

rapidly approaches 1. For instance, coth 5 is already approximately equal to 1.0009. Assuming that
there are no particularly stringent accuracy requirements on the inversion, we can use the following
approximate scheme:

g−1(x) ≈

{
2πx, x > g(5) ≈ 0.795

g−1
rat(x), otherwise

where we have approximated cothκ ≈ 1 for κ > 5 and make use the following rational interpolant
elsewhere:

g−1
rat(x) := max

{
10−5,

168.479x2 + 16.4585x− 2.39942

−1.12718x2 + 29.1433x+ 1

}
.

On the interval [1/4π, g(5)], the function g−1
rat has an absolute error of < 0.007 The relative error is

infinite, as g−1(x)→ 0 (x→ 1/4π). Figure 1 shows an illustration of the fit.
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Figure 1: Fit of the rational function g−1
rat (blue) to g−1 (red).

5 Convolution

The convolution of two vMF distributions does not generally produce another vMF distribution.
However, the result of this operation can be well-approximated by a vMF distribution with a suit-
ably chosen value of κ. Mardia and Jupp [4] describe one approach to obtain this parameter, which
entails approximating the distributions to be convolved by wrapped normal distributions, convolv-
ing them instead, and transforming the result back into a vMF distribution. A C implementation
of this is given below:

float A3(float kappa) {

return 1 / std::tanh(kappa) - 1 / kappa;

}

float dA3(float kappa) {

float csch = 2.0f / (std::exp(kappa) - std::exp(-kappa));

return 1 / (kappa*kappa) - csch*csch;

}

float A3inv(float y, float guess) {

/* Initial guess */

float x = guess, residual = 0;

/* Invert using Newton’s method */

do {

residual = A3(x)-y, deriv = dA3(x);

x -= residual/deriv;

} while (std::abs(residual) > 1e-5f);

return x;

}

float convolve(float kappa1, float kappa2) {

return A3inv(A3(kappa1) * A3(kappa2), std::min(kappa1, kappa2));

}
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