
Mitsuba Documentation
Version 0.3.0

Wenzel Jakob

August 30, 2011

Contents Contents

Contents

I. Using Mitsuba 5

1. About Mitsuba 5

2. License 6

3. Compiling the renderer 7
3.1. Common steps . 7
3.2. Compilation flags . 7
3.3. Building on Ubuntu Linux . 8

3.3.1. Creating Ubuntu packages . 9
3.3.2. Releasing Ubuntu packages . 10

3.4. Building on Fedora Core . 10
3.4.1. Creating Fedora Core packages . 10

3.5. Building on Arch Linux . 11
3.5.1. Creating Arch Linux packages . 11

3.6. Building on Windows . 12
3.6.1. Integration with the Visual Studio interface 12

3.7. Building on Mac OS X . 13

4. Basic usage 14
4.1. Interactive frontend . 14
4.2. Command line interface . 14

4.2.1. Passing parameters . 16
4.2.2. Writing partial images to disk . 17
4.2.3. Rendering an animation . 17

4.3. Direct connection server . 17
4.4. Utility launcher . 18

5. Scene file format 19
5.1. Property types . 21

5.1.1. Numbers . 21
5.1.2. Strings . 21
5.1.3. Color spectra . 21
5.1.4. Vectors, Positions . 23
5.1.5. Transformations . 23

5.2. Instancing . 24
5.3. Including external files . 24

6. Plugin reference 25
6.1. Shapes . 26

6.1.1. Sphere intersection primitive (sphere) . 28
6.1.2. Cylinder intersection primitive (cylinder) 30

2

Contents Contents

6.1.3. Wavefront OBJ mesh loader (obj) . 31
6.1.4. Shape group for geometry instancing (shapegroup) 32
6.1.5. Geometry instance (instance) . 33
6.1.6. Animated geometry instance (animatedinstance) 34
6.1.7. Serialized mesh loader (serialized) . 35
6.1.8. Hair intersection shape (hair) . 36
6.1.9. PLY (Stanford Triangle Format) mesh loader (ply) 37

6.2. Surface scattering models . 38
6.2.1. Smooth diffuse material (diffuse) . 41
6.2.2. Rough diffuse material (roughdiffuse) . 42
6.2.3. Smooth dielectric material (dielectric) . 43
6.2.4. Rough dielectric material (roughdielectric) 45
6.2.5. Smooth conductor (conductor) . 48
6.2.6. Rough conductor material (roughconductor) 50
6.2.7. Smooth plastic material (plastic) . 52
6.2.8. Rough plastic material (roughplastic) . 53
6.2.9. Smooth dielectric coating (coating) . 55
6.2.10. Rough dielectric coating (roughcoating) . 57
6.2.11. Bump map modifier (bump) . 59
6.2.12. Modified Phong BRDF (phong) . 60
6.2.13. Anisotropic Ward BRDF (ward) . 61
6.2.14. Hanrahan-Krueger BSDF (hk) . 63
6.2.15. Irawan & Marschner woven cloth BRDF (irawan) 65
6.2.16. Two-sided BRDF adapter (twosided) . 66
6.2.17. Mixture material (mixturebsdf) . 67
6.2.18. Diffuse transmitter (difftrans) . 68
6.2.19. Opacity mask (mask) . 69
6.2.20. Subsurface scattering BRDF (sssbrdf) . 70

6.3. Textures . 71
6.3.1. Vertex color passthrough texture (vertexcolors) 72
6.3.2. Bitmap texture (bitmap) . 73
6.3.3. Procedural grid texture (gridtexture) . 74
6.3.4. Checkerboard (checkerboard) . 75

6.4. Subsurface scattering . 76
6.5. Participating media . 77

6.5.1. Heterogeneous participating medium (heterogeneous) 78
6.5.2. Homogeneous participating medium (homogeneous) 79

6.6. Phase functions . 81
6.6.1. Isotropic phase function (isotropic) . 82
6.6.2. Henyey-Greenstein phase function (hg) . 83
6.6.3. Rayleigh phase function (rayleigh) . 84
6.6.4. Kajiya-Kay phase function (kkay) . 85
6.6.5. Micro-flake phase function (microflake) . 86
6.6.6. Mixture phase function (mixturephase) . 87

6.7. Volume data sources . 88
6.7.1. Grid-based volume data source (gridvolume) 89

3

Contents Contents

6.7.2. Caching volume data source (volcache) . 91
6.7.3. Constant-valued volume data source (constvolume) 92

6.8. Luminaires . 93
6.8.1. Sun luminaire (sun) . 94
6.8.2. Skylight luminaire (sky) . 95
6.8.3. Sun and sky luminaire (sunsky) . 97
6.8.4. Environment map luminaire (envmap) . 98

6.9. Integrators . 99
6.9.1. Path tracer with multiple importance sampling (path) 101

6.10. Films . 102
6.10.1. OpenEXR-based film (exrfilm) . 103
6.10.2. MATLAB M-file film (mfilm) . 104
6.10.3. PNG-based film (pngfilm) . 105

II. Development guide 106

7. Code structure 106

8. Coding style 106

9. Designing a custom integrator plugin 109
9.1. Basic implementation . 109
9.2. Visualizing depth . 112
9.3. Nesting . 114

10. Parallelization layer 115

11. Python integration 122
11.1. Basics . 122
11.2. Recipes . 122

11.2.1. Loading a scene . 123
11.2.2. Rendering a loaded scene . 123
11.2.3. Rendering over the network . 124
11.2.4. Constructing custom scenes from Python . 124
11.2.5. Taking control of the logging system . 126

12. Acknowledgments 128

4

1. About Mitsuba 1. About Mitsuba

Part I.
UsingMitsuba
Disclaimer: This is manual documents the usage, file format, and internal design of the Mitsuba
rendering system. It is currently a work in progress, hence some parts may still be incomplete or
missing.

1. About Mitsuba

Mitsuba is a research-oriented rendering system in the style of PBRT (www.pbrt.org), from which
it derives much inspiration. It is written in portable C++, implements unbiased as well as biased
techniques, and contains heavy optimizations targeted towards current CPU architectures. Mitsuba
is extremely modular: it consists of a small set of core libraries and over 100 different plugins that
implement functionality ranging from materials and light sources to complete rendering algorithms.

In comparison to other open source renderers, Mitsuba places a strong emphasis on experimental
rendering techniques, such as path-based formulations of Metropolis Light Transport and volumetric
modeling approaches. Thus, it may be of genuine interest to those who would like to experiment with
such techniques that haven’t yet found their way into mainstream renderers, and it also provides a
solid foundation for research in this domain.

Other design considerations are are:

Performance: One important goal of Mitsuba is to provide optimized implementations of the most
commonly used rendering algorithms. By virtue of running on a shared foundation, comparisons be-
tween them can better highlight the merits and limitations of different approaches. This is in contrast
to, say, comparing two completely different rendering products, where technical information on the
underlying implementation is often intentionally not provided.

Robustness: In many cases, physically-based rendering packages force the user to model scenes
with the underlying algorithm (specifically: its convergence behavior) in mind. For instance, glass
windows are routinely replaced with light portals, photons must be manually guided to the relevant
parts of a scene, and interactions with complex materials are taboo, since they cannot be importance
sampled exactly. One focus of Mitsuba will be to develop path-space light transport algorithms, which
handle such cases more gracefully.

Scalability: Mitsuba instances can be merged into large clusters, which transparently distribute and
jointly execute tasks assigned to them using only node-to-node communcation. It has successfully
scaled to large-scale renderings that involved more than 1000 cores working on a single image. Most
algorithms in Mitsuba are written using a generic parallelization layer, which can tap into this cluster-
wide parallelism. The principle is that if any component of the renderer produces work that takes
longer than a second or so, it at least ought to use all of the processing power it can get.

The renderer also tries to be very conservative in its use of memory, which allows it to handle large
scenes (>30 million triangles) and multi-gigabyte heterogeneous volumes on consumer hardware.

Realism and accuracy: Mitsuba comes with a large repository of physically-based reflectance mod-
els for surfaces and participating media. These implementations are designed so that they can be
used to build complex shader networks, while providing enough flexibility to be compatible with

5

www.pbrt.org

2. License 2. License

a wide range of different rendering techniques, including path tracing, photon mapping, hardware-
accelerated rendering and bidirectional methods.

The unbiased path tracers in Mitsuba are battle-proven and produce reference-quality results that
can be used for predictive rendering, and to verify implementations of other rendering methods.

Usability: Mitsuba comes with a graphical user interface to interactively explore scenes. Once
a suitable viewpoint has been found, it is straightforward to perform renderings using any of the
implemented rendering techniques, while tweaking their parameters to find the most suitable settings.
Experimental integration into Blender 2.5 is also available.

2. License

Mitsuba is free software and can be redistributed and modified under the terms of the GNU General
Public License (Version 3) as provided by the Free Software Foundation.

6

3. Compiling the renderer 3. Compiling the renderer

3. Compiling the renderer

To compile Mitsuba, you will need a recent C++ compiler (e.g. GCC 4.1+ or Visual Studio 2008+)
and some additional libraries, which Mitsuba uses internally. Builds on all supported platforms are
done using a unified system based on SCons (http://www.scons.org), which is a Python-based
software construction tool. There are some differences between the different operating systems—for
more details, please refer to one of the next sections depending on which one you use.

3.1. Common steps

To get started, you will need to download a recent version of Mitsuba. Make sure that you have the
Mercurial (http://mercurial.selenic.com/) versioning system installed1 and enter the follow-
ing at the command prompt:

$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba

Afterwards, you will need to download the precompiled dependencies into a new subdirectory named
mitsuba/dependencies:

$ cd mitsuba
$ hg clone https://www.mitsuba-renderer.org/hg/dependencies

Common to all platforms is that a build configuration file must be chosen: amongst the following,
please copy the best matching file into a new file to the root of the Mitsuba directory and rename it
into config.py.

build/config-linux.py
build/config-darwin-x86_64.py
build/config-darwin-x86.py
build/config-darwin-universal.py
build/config-msvc2008-win32.py
build/config-msvc2008-win64.py
build/config-msvc2010-win32.py
build/config-msvc2010-win64.py
build/config-icl12-msvc2010-win32.py
build/config-icl12-msvc2010-win64.py
build/config-icl12-darwin-x86_64.py
build/config-icl12-darwin-x86.py

3.2. Compilation flags

Usually, you will not have to make any modification to this file, but sometimes a few minor edits
may be necessary. In particular, you might want to add or remove certain compilation flags from the
CXXFLAGS parameter. The following settings affect the behavior of Mitsuba:

MTS_DEBUG Enable assertions etc. Usually a good idea, and enabled by default.

MTS_KD_DEBUG Enable additional checks in the kd-Tree. This is quite slow and mainly useful to track
down bugs when they are suspected.

1On Windows, you might want to use the convenient TortoiseHG shell extension (http://tortoisehg.bitbucket.
org/) to run the subsequent steps directly from the Explorer.

7

http://www.scons.org
http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/
http://tortoisehg.bitbucket.org/

3. Compiling the renderer 3.3. Building on Ubuntu Linux

MTS_KD_CONSERVE_MEMORY Use a more compact representation for triangle geometry (at the cost
of speed). This flag causes Mitsuba to use the somewhat slower Moeller-Trumbore triangle
intersection method instead of the default Wald intersection test, which has an overhead of 48
bytes per triangle. Off by default.

MTS_SSE Activate optimized SSE routines. On by default.

MTS_HAS_COHERENT_RT Include coherent ray tracing support (depends on MTS_SSE). This flag is
activated by default.

MTS_DEBUG_FP Generated NaNs and overflows will cause floating point exceptions, which can be
caught in a debugger. This is slow and mainly meant as a debugging tool for developers. Off by
default.

SPECTRUM_SAMPLES=⟨..⟩ This setting defines the number of spectral samples (in the 368-830 nm
range) that are used to render scenes. The default is 3 samples, in which case the renderer
automatically turns into an RGB-based system. For high-quality spectral rendering, this should
be set to 30 or higher.

SINGLE_PRECISION Do all computation in single precision. This is normally sufficient and there-
fore used as the default setting.

DOUBLE_PRECISION Do all computation in double precision. This flag is incompatible withMTS_SSE,
MTS_HAS_COHERENT_RT, and MTS_DEBUG_FP.

MTS_GUI_SOFTWARE_FALLBACK Forces the GUI to use a software fallback mode, which is consider-
ably slower and removes the realtime preview. This is useful when running the interface on a
remote Windows machine accessed via the Remote Desktop Protocol (RDP).

All of the default configurations files located in the build directory use the flags SINGLE_PRECISION,
SPECTRUM_SAMPLES=3, MTS_DEBUG, MTS_SSE, as well as MTS_HAS_COHERENT_RT.

3.3. Building on Ubuntu Linux

You’ll first need to install a number of dependencies. It is assumed here that you are using Ubuntu
Linux (Maverick Meerkat / 10.10 or later), hence some of the package may be named differently if you
are using another version.

First, run

$ sudo apt-get install build-essential scons mercurial qt4-dev-tools libpng12-dev
libjpeg62-dev libilmbase-dev libxerces-c3-dev libboost1.42-all-dev
libopenexr-dev libglewmx1.5-dev libxxf86vm-dev libpcrecpp0
libboost-system-dev libboost-filesystem-dev libboost-python-dev libboost-dev

Please ensure that the installed version of the boost libraries is 1.42 or later. To get COLLADA sup-
port, you will also need to install the collada-dom packages or build it from scratch. Here, we install
the x86_64 binaries and development headers that can be found in the dependencies/linux di-
rectory2:

2The directory also contains source packages in case these binaries don’t work for you.

8

3. Compiling the renderer 3.3. Building on Ubuntu Linux

$ sudo dpkg --install collada-dom_2.3.1-1_amd64.deb collada-dom-dev_2.3.1-1_amd64.
deb

Afterwards, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To be able to run the renderer from the command line, you will first have to import it into your path:

$. setpath.sh

(note the period at the beginning – this assumes that you are using bash). Having set up everything,
you can now move on to Section 4.

3.3.1. Creating Ubuntu packages

For Ubuntu, the preferred way of redistristributing executables is to create .deb package files. To cre-
ate Mitsuba packages, it is strongly recommended that you work with a pristine Ubuntu installation3.
This can be done as follows: first, install debootstrap and download the latest version of Ubuntu to
a subdirectory (here, we use Maverick Meerkat, or version 10.10)

$ sudo apt-get install debootstrap
$ sudo debootstrap --arch amd64 maverick maverick-pristine

Next, chroot into the created directory, enable the multiverse package repository, and install the
necessary tools for creating package files:

$ sudo chroot maverick-pristine
$ echo "deb http://archive.ubuntu.com/ubuntu maverick universe" >> /etc/apt/
sources.list

$ apt-get update
$ apt-get install debhelper dpkg-dev pkg-config

Now, you should be able to set up the remaining dependencies as described in Section 3.3. Once this
is done, check out a copy of Mitsuba to the root directory of the chroot environment, e.g.

$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba

To start the compilation process, enter

$ cd mitsuba
$ cp -R data/linux/debian debian
$ dpkg-buildpackage -nc

After everything has been built, you should find the created package files in the root directory.

3Several commercial graphics drivers “pollute” the OpenGL setup so that the compiled Mitsuba binaries can only be
used on machines using the same drivers. For this reason, it is better to work from a clean boostrapped install.

9

3. Compiling the renderer 3.4. Building on Fedora Core

3.3.2. Releasing Ubuntu packages

To redistribute Ubuntu packages over the Internet, it is convenient to put them into anapt-compatible
repository. To prepare such a repository, put the two deb-files built in the last section, as well as the
collada-dom deb-files into a public directory made available by a HTTP server and inside it, run

path − to − htdocs$ dpkg-scanpackages path/to/deb-directory /dev/null | gzip -9c >
path/to/deb-directory/Packages.gz

This will create a respository index file named Packages.gz. Note that you must execute this com-
mand in the root directory of the HTTP server’s web directory and provide the relative path to the
package files – otherwise, the index file will specify the wrong package paths. Finally, the whole di-
rectory can be uploaded to some public location and then referenced by placing a line following the
pattern

deb http://<path-to-deb-directory> ./

into the /etc/apt/sources.list file.

3.4. Building on Fedora Core

You’ll first need to install a number of dependencies. It is assumed here that you are using FC15, hence
some of the package may be named differently if you are using another version.

First, run

$ yum install mercurial gcc-c++ scons boost-devel qt4-devel OpenEXR-devel xerces-c-
devel python-devel glew-devel collada-dom-devel

Afterwards, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To be able to run the renderer from the command line, you will first have to import it into your path:

$. setpath.sh

(note the period at the beginning – this assumes that you are using bash). Having set up everything,
you can now move on to Section 4.

3.4.1. Creating Fedora Core packages

To create RPM packages, you will need to install the RPM development tools:

$ yum install rpmdevtools

Once this is done, run the following command in your home directory:

$ rpmdev-setuptree

and create a Mitsuba source package in the appropriate directory:

10

3. Compiling the renderer 3.5. Building on Arch Linux

$ ln -s mitsuba mitsuba-0.3.0
$ tar czvf rpmbuild/SOURCES/mitsuba-0.3.0.tar.gz mitsuba-0.3.0/.

Finally, rpmbuilder can be invoked to create the package:

$ rpmbuild -bb mitsuba-0.3.0/data/linux/fedora/mitsuba.spec

After this command finishes, its output can be found in the directory rpmbuild/RPMS.

3.5. Building on Arch Linux

You’ll first need to install a number of dependencies:

$ sudo pacman -S gcc xerces-c glew openexr boost libpng libjpeg qt scons mercurial
python

For COLLADA support, you will also have to install the collada-dom library. For this, you can either
install the binary package available on the Mitsuba website, or you can compile it yourself using the
PKGBUILD supplied with Mitsuba, i.e.

$ cd <some-temporary-directory>
$ cp <path-to-mitsuba>/data/linux/arch/collada-dom/PKGBUILD .
$ makepkg PKGBUILD
<..compiling..>
$ sudo pacman -U <generated package file>

Once all dependencies are taken care of, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To be able to run the renderer from the command line, you will first have to import it into your path:

$. setpath.sh

(note the period at the beginning – this assumes that you are using bash). Having set up everything,
you can now move on to Section 4.

3.5.1. Creating Arch Linux packages

Mitsuba ships with a PKGBUILD file, which automatically builds a package from the most recent repos-
itory version:

$ makepkg data/linux/arch/mitsuba/PKGBUILD

11

3. Compiling the renderer 3.6. Building on Windows

3.6. Building on Windows

On the Windows platform, Mitsuba already includes most of the dependencies in precompiled form.
You will still need to set up a few things though: first, you need to install Python 2.6.x 4 (www.
python.org) and SCons 5 (http://www.scons.org, any 2.x version will do) and ensure that they
are contained in the %PATH% environment variable so that entering scons on the command prompt
(cmd.exe) launches the build system.

Next, you will either need to compile Qt 4.7 (or a newer version) from source or grab pre-built
binaries (e.g. from http://code.google.com/p/qt-msvc-installer). It is crucial that the Qt
build configuration exactly matches that of Mitsuba: for instance, if you were planning to use the
64-bit compiler in Visual Studio 2010, both projects must be built with that exact same compiler.

When building Qt from source, an important point is to install any Visual Studio service packs
prior to this step—for instance, 64-bit Qt binaries always crash when built with a Visual Studio 2010
installation that is missing SP1. Once that is taken care of, start the correct Visual Studio command
prompt, and enter

C:\Qt>configure.exe -release -no-webkit -no-phonon -no-phonon-backend -no-script
-no-scripttools -no-qt3support -no-multimedia -no-ltcg

..(configuration messages)..
C:\Qt>nmake

inside the Qt source directory.
Having installed all dependencies, run the “Visual Studio 2008/2010 Command Prompt” from the

Start Menu (x86 for 32-bit or x64 for 64bit). Afterwards, navigate to the Mitsuba directory. Depend-
ing on whether or not the Qt binaries are on the %PATH% environment variable, you might have to
explicitly specify the Qt path:

C:\Mitsuba\>set QTDIR=C:\Qt

where C:/Qt is the path to your Qt installation. Afterwards, simply run

C:\Mitsuba\>scons

In the case that you have multiple processors, you might want to parallelize the build by appending
the option -j core count to the scons command.

If all goes well, the build process will finish successfully after a few minutes. In comparison to
the other platforms, you don’t have to run the setpath.sh script at this point. All binaries are now
located in the dist directory, and they should be executed directly from there.

3.6.1. Integration with the Visual Studio interface

Basic Visual Studio 2008 and 2010 integration with support for code completion exists for those who
develop Mitsuba code on Windows. To use the supplied projects, simply double-click on one of
the two files build/mitsuba-msvc2008.sln and build/mitsuba-msvc2010.sln. These Visual
Studio projects still internally use the SCons-based build system to compile Mitsuba; whatever build

4Please make sure that you get a Python binary matching the architecture, for which you plan to compile Mitsuba (i.e.
x86 or x86_64) – this is needed for the Python bindings. If you wish to use another Python version, you will have to
change config.py and supply your own Boost boost binaries linked against that version of Python.

5Note that on someWindowsmachines, the SCons installer generates a warning about not finding Python in the registry.
In this case, you can instead run python setup.py install within the source release of SCons.

12

www.python.org
www.python.org
http://www.scons.org
http://code.google.com/p/qt-msvc-installer

3. Compiling the renderer 3.7. Building on Mac OS X

configuration is selected within Visual Studio will be used to pick a matching configuration file from
the build directory. Note that you will potentially have to add a QTDIR=.̈..¨ line to each of the used
configuration files when building directly from Visual Studio.

3.7. Building on Mac OS X

On Mac OS X, you will need to install both SCons (>2.0.0, available at www.scons.org) and a recent
release of XCode. You will also need to get Qt 4.7.0 or a newer version — make sure that you get the
normal Cocoa release (i.e. not the one based on Carbon). All of the other dependencies are already
included in precompiled form. Now open a Terminal and run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-
allelize the build by appending -j core count to the command. If all goes well, SCons should finish
successfully within a few minutes:

scons: done building targets.

To be able to run the renderer from the command line, you will have to import it into your path:

$. setpath.sh

(note the period at the beginning – this assumes that you are using bash).

13

4. Basic usage 4. Basic usage

4. Basic usage

The rendering functionality of Mitsuba can be accessed through a command line interface and an
interactive Qt-based frontend. This section provides some basic instructions on how to use them.

4.1. Interactive frontend

To launch the interactive frontend, run Mitsuba.app on MacOS, mtsgui.exe on Windows, and
mtsgui on Linux (after sourcing setpath.sh). You can also drag and drop scene files onto the
application icon or the running program to open them. A quick video tutorial on using the GUI can
be found here: http://vimeo.com/13480342.

4.2. Command line interface

The mitsuba binary is an alternative non-interactive rendering frontend for command-line usage
and batch job operation. To get a listing of the parameters it supports, run the executable without
parameters:

$ mitsuba

Listing 1 shows the output resulting from this command. The most common mode of operation is to
render a single scene, which is provided as a parameter, e.g.

$ mitsuba path-to/my-scene.xml

It is also possible to connect to network render nodes, which essentially lets Mitsuba parallelize over
additional cores. To do this, pass a semicolon-separated list of machines to the -c parameter.

$ mitsuba -c machine1;machine2;... path-to/my-scene.xml

There are two different ways in which you can access render nodes:

• Direct: Here, you create a direct connection to a running mtssrv instance on another machine
(mtssrv is the Mitsuba server process). From the the performance standpoint, this approach
should always be preferred over the SSH method described below when there is a choice be-
tween them. There are some disadvantages though: first, you need to manually start mtssrv
on every machine you want to use.

And perhaps more importantly: the direct communication protocol makes no provisions for
a malicious user on the remote side. It is too costly to constantly check the communication
stream for illegal data sequences, so Mitsuba simply doesn’t do it. The consequence of this is
that you should only use the direct communication approach within trusted networks.

For direct connections, you can specify the remote port as follows:

$ mitsuba -c machine:1234 path-to/my-scene.xml

When no port is explicitly specified, Mitsuba uses default value of 7554.

• SSH: This approach works as follows: The renderer creates a SSH connection to the remote
side, where it launches a Mitsuba worker instance. All subsequent communication then passes

14

http://vimeo.com/13480342

4. Basic usage 4.2. Command line interface

Mitsuba version 0.3.0, Copyright (c) 2011 Wenzel Jakob
Usage: mitsuba [options] <One or more scene XML files>
Options/Arguments:
-h Display this help text

-D key=val Define a constant, which can referenced as "$key" in the scene

-o fname Write the output image to the file denoted by "fname"

-a p1;p2;.. Add one or more entries to the resource search path

-p count Override the detected number of processors. Useful for reducing
the load or creating scheduling-only nodes in conjunction with
the -c and -s parameters, e.g. -p 0 -c host1;host2;host3,...

-q Quiet mode - do not print any log messages to stdout

-c hosts Network rendering: connect to mtssrv instances over a network.
Requires a semicolon-separated list of host names of the form

host.domain[:port] for a direct connection
or

user@host.domain[:path] for a SSH connection (where
"path" denotes the place where Mitsuba is checked
out -- by default, "~/mitsuba" is used)

-s file Connect to additional Mitsuba servers specified in a file
with one name per line (same format as in -c)

-j count Simultaneously schedule several scenes. Can sometimes accelerate
rendering when large amounts of processing power are available
(e.g. when running Mitsuba on a cluster. Default: 1)

-n name Assign a node name to this instance (Default: host name)

-t Test case mode (see Mitsuba docs for more information)

-x Skip rendering of files where output already exists

-r sec Write (partial) output images every 'sec' seconds

-b res Specify the block resolution used to split images into parallel
workloads (default: 32). Only applies to some integrators.

-v Be more verbose

-w Treat warnings as errors

-z Disable progress bars

For documentation, please refer to http://www.mitsuba-renderer.org/docs.html

Listing 1: Command line options of the mitsuba binary

15

4. Basic usage 4.2. Command line interface

through the encrypted link. This is completely secure but slower due to the encryption over-
head. If you are rendering a complex scene, there is a good chance that it won’t matter much
since most time is spent doing computations rather than communicating
Such an SSH link can be created simply by using a slightly different syntax:
$ mitsuba -c username@machine path-to/my-scene.xml

The above line assumes that the remote home directory contains a Mitsuba source directory
named mitsuba, which contains the compiled Mitsuba binaries. If that is not the case, you
need to provide the path to such a directory manually, e.g:
$ mitsuba -c username@machine:/opt/mitsuba path-to/my-scene.xml

For the SSH connection approach to work, you must enable passwordless authentication. Try
opening a terminal window and running the command ssh username@machine (replace
with the details of your remote connection). If you are asked for a password, something is not
set up correctly — please see http://www.debian-administration.org/articles/152
for instructions.
On Windows, the situation is a bit more difficult since there is no suitable SSH client by default.
To get SSH connections to work, Mitsuba requires plink.exe (from PuTTY) to be on the
path. For passwordless authentication with a Linux/OSX-based server, convert your private
key to PuTTY’s format using puttygen.exe. Afterwards, start pageant.exe to load and
authenticate the key. All of these binaries are available from the PuTTY website.
It is possible to mix the two approaches to access some machines directly and others over SSH.

When doing many network-based renders over the command line, it can become tedious to specify
the connections every time. They can alternatively be loaded from a text file where each line contains
a separate connection description as discussed previously:
$ mitsuba -s servers.txt path-to/my-scene.xml

where servers.txt e.g. contains
user1@machine1.domain.org:/opt/mitsuba
machine2.domain.org
machine3.domain.org:7346

4.2.1. Passing parameters

Any attribute in the XML-based scene description language can be parameterized from the command
line. For instance, you can render a scene several times with different reflectance values on a certain
material by changing its description to something like
<bsdf type="diffuse">

<spectrum name="reflectance" value="$reflectance"/>
</bsdf>

and running Mitsuba as follows:
$ mitsuba -Dreflectance=0.1 -o ref_0.1.exr scene.xml
$ mitsuba -Dreflectance=0.2 -o ref_0.2.exr scene.xml
$ mitsuba -Dreflectance=0.5 -o ref_0.5.exr scene.xml

16

http://www.debian-administration.org/articles/152

4. Basic usage 4.3. Direct connection server

4.2.2. Writing partial images to disk

When doing lengthy command line renders on Linux or OSX, it is possible to send a signal to the
process using

$ killall -HUP mitsuba

This causes the renderer to write out the partially finished image, after which it continues rendering.
This can sometimes be useful to check if everything is working correctly.

4.2.3. Rendering an animation

The command line interface is ideally suited for rendering large amounts of files in batch operation.
You can simply pass in the files using a wildcard in the filename.

If you’ve already rendered a subset of the frames and you only want to complete the remainder,
add the -x flag, and all files with existing output will be skipped. You can also let the scheduler work
on several scenes at once using the -j parameter — this is especially useful when parallelizing over
multiple machines: as some of the participating machines finish rendering the current frame, they
can immediately start working on the next one instead of having to wait for all other cores to finish.
Altogether, you might start the with parameters such as the following

$ mitsuba -xj 2 -c machine1;machine2;... animation/frame_*.xml

4.3. Direct connection server

A Mitsuba compute node can be created using the mtssrv executable. By default, it will listen on
port 7554:

$ mtssrv
..
maxwell: Listening on port 7554.. Send Ctrl-C or SIGTERM to stop.

Type mtssrv -h to see a list of available options. If you find yourself unable to connect to the server,
mtssrv is probably listening on the wrong interface. In this case, please specify an explicit IP address
or hostname:

$ mtssrv -i maxwell.cs.cornell.edu

As advised in Section 4.2, it is advised to run mtssrv only in trusted networks.
One nice feature of mtssrv is that it (like the mitsuba executable) also supports the -c and -s

parameters, which create connections to additional compute servers. Using this feature, one can
create hierarchies of compute nodes. For instance, the root mttsrv instance of such a hierarchy
could share its work with a number of other machines running mtssrv, and each of these might also
share their work with further machines, and so on...

The parallelization over such hierarchies happens transparently—when connecting a renderering
process to the root node, it sees a machine with hundreds or thousands of cores, to which it can
submit work without needing to worry about how exactly it is going to be spread out in the hierarchy.

Such hierarchies are mainly useful to reduce communication bottlenecks when distributing large
resources (such as scenes) to remote machines. Imagine the following hypothetical scenario: you
would like to render a 50MB-sized scene while at home, but rendering is too slow. You decide to
tap into some extra machines available at your workplace, but this usually doesn’t make things much

17

4. Basic usage 4.4. Utility launcher

faster because of the relatively slow broadband connection and the need to transmit your scene to
every single compute node involved.

Using mtssrv, you can instead designate a central scheduling node at your workplace, which ac-
cepts connections and delegates rendering tasks to the other machines. In this case, you will only
have to transmit the scene once, and the remaining distribution happens over the fast local network
at your workplace.

4.4. Utility launcher

When working on a larger project, one often needs to implement various utility programs that per-
form simple tasks, such as applying a filter to an image or processing a matrix stored in a file. In a
framework like Mitsuba, this unfortunately involves a significant coding overhead in initializing the
necessary APIs on all supported platforms. To reduce this tedious work on the side of the program-
mer, Mitsuba comes with a utility launcher called mtsutil.

The general usage of this command is

$ mtsutil [options] <utility name> [arguments]

For a listing of all supported options and utilities, enter the command without parameters.

18

5. Scene file format 5. Scene file format

5. Scene file format

Mitsuba uses a very simple and general XML-based format to represent scenes. Since the framework’s
philosophy is to represent discrete blocks of functionality as plugins, a scene file can essentially be
interpreted as description that determines which plugins should be instantiated and how they should
interface with each other. In the following, we’ll look at a few examples to get a feeling for the scope
of the format.

An simple scene with a single mesh and the default lighting and camera setup might look some-
thing like this:

<?xml version="1.0" encoding="utf-8"?>
<scene version="0.3.0">

<shape type="obj">
<string name="filename" value="dragon.obj"/>

</shape>
</scene>

The scene version attribute denotes the release of Mitsuba that was used to create the scene. This
information allows Mitsuba to always correctly process the file irregardless of any potential future
changes in the scene description language.

This example already contains the most important things to know about format: you can have ob-
jects (such as the objects instantiated by the scene or shape tags), which are allowed to be nested
within each other. Each object optionally accepts properties (such as the string tag), which fur-
ther characterize its behavior. All objects except for the root object (the scene) cause the renderer
to search and load a plugin from disk, hence you must provide the plugin name using type=".."
parameter.

The object tags also let the renderer know what kind of object is to be instantiated: for instance, any
plugin loaded using the shape tag must conform to the Shape interface, which is certainly the case
for the plugin named obj (it contains a WaveFront OBJ loader). Similarly, you could write

<?xml version="1.0" encoding="utf-8"?>
<scene version="0.3.0">

<shape type="sphere">
<float name="radius" value="10"/>

</shape>
</scene>

This loads a different plugin (sphere) which is still a Shape, but instead represents a sphere configured
with a radius of 10 world-space units. Mitsuba ships with a large number of plugins; please refer to
the next chapter for a detailed overview of them.

The most common scene setup is to declare an integrator, some geometry, a camera, a film, a
sampler and one or more luminaires. Here is a more complex example:

<?xml version="1.0" encoding="utf-8"?>

<scene version="0.3.0">
<integrator type="path">

<!-- Path trace with a max. path length of 8 -->
<integer name="maxDepth" value="8"/>

</integrator>

19

5. Scene file format 5. Scene file format

<!-- Instantiate a perspective camera with 45 degrees field of view -->
<camera type="perspective">

<!-- Rotate the camera around the Y axis by 180 degrees -->
<transform name="toWorld">

<rotate y="1" angle="180"/>
</transform>
<float name="fov" value="45"/>

<!-- Render with 32 samples per pixel using a basic
independent sampling strategy -->

<sampler type="independent">
<integer name="sampleCount" value="32"/>

</sampler>

<!-- Generate an EXR image at HD resolution -->
<film type="exrfilm">

<integer name="width" value="1920"/>
<integer name="height" value="1080"/>

</film>
</camera>

<!-- Add a dragon mesh made of rough glass (stored as OBJ file) -->
<shape type="obj">

<string name="filename" value="dragon.obj"/>

<bsdf type="roughdielectric">
<!-- Tweak the roughness parameter of the material -->
<float name="alpha" value="0.01"/>

</bsdf>
</shape>

<!-- Add another mesh -- this time, stored using Mitsuba's own
(compact) binary representation -->

<shape type="serialized">
<string name="filename" value="lightsource.serialized"/>
<transform name="toWorld">

<translate x="5" x="-3" z="1"/>
</transform>

<!-- This mesh is an area luminaire -->
<luminaire type="area">

<rgb name="intensity" value="100,400,100"/>
</luminaire>

</shape>
</scene>

This example introduces several new object types (integrator, camera, bsdf, sampler, film,
and luminaire) and property types (integer, transform, and rgb). As you can see in the exam-
ple, objects are usually declared at the top level except if there is some inherent relation that links
them to another object. For instance, BSDFs are usually specific to a certain geometric object, so they
appear as a child object of a shape. Similarly, the sampler and film affect the way in which rays are

20

5. Scene file format 5.1. Property types

generated from the camera and how it records the resulting radiance samples, hence they are nested
inside it.

5.1. Property types

This section documents all of the ways in which properties can be supplied to objects. If you are more
interested in knowing which properties a certain plugin accepts, you should look at the next section
instead.

5.1.1. Numbers

Integer and floating point values can be passed as follows:

<integer name="intProperty" value="1234"/>
<float name="floatProperty" value="1.234"/>
<float name="floatProperty2" value="-1.5e3"/>

Note that you must adhere to the format expected by the object, i.e. you can’t pass an integer property
to an object, which expects a floating-point value associated with that name.

5.1.2. Strings

Passing strings is straightforward:

<string name="stringProperty" value="This is a string"/>

5.1.3. Color spectra

Depending on the compilation flags of Mitsuba (see Section 3.2 for details), the renderer internally
either represents colors using discretized color spectra (when SPECTRUM_SAMPLES is set to a value
other than 3), or it uses a basic linear RGB representation6. Irrespective of which internal representa-
tion is used, Mitsuba supports several different ways of specifying color information, which is then
converted appropriately.

The preferred way of passing color spectra to the renderer is to explicitly denote the associated
wavelengths of each value:

<spectrum name="spectrumProperty" value="400:0.56, 500:0.18, 600:0.58, 700:0.24"/>

This is a mapping from wavelength in nanometers (before the colon) to a reflectance or intensity value
(after the colon). Values in between are linearly interpolated from the two closest neighbors. A useful
shortcut to get a completely uniform spectrum, it is to provide only a single value:

<spectrum name="spectrumProperty" value="0.56"/>

Another (discouraged) option is to directly provide the spectrum in Mitsuba’s internal represen-
tation, avoiding the need for any kind of conversion. However, this is problematic, since the as-
sociated scene will likely not work anymore when Mitsuba is compiled with a different value of
SPECTRUM_SAMPLES. For completeness, the possibility is explained nonetheless. Assuming that the
360-830nm range is discretized into ten 47nm-sized blocks (i.e. SPECTRUM_SAMPLES is set to 10),
their values can be specified as follows:
6The official releases all use linear RGB—to do spectral renderings, you will have to compile Mitsuba yourself.

21

5. Scene file format 5.1. Property types

<spectrum name="spectrumProperty" value=".2, .2, .8, .4, .6, .5, .1, .9, .4, .2"/>

Another convenient way of providing color spectra is by specifying linear RGB or sRGB values
using floating-point triplets or hex values:

<rgb name="spectrumProperty" value="0.2, 0.8, 0.4"/>
<srgb name="spectrumProperty" value="0.4, 0.3, 0.2"/>
<srgb name="spectrumProperty" value="#f9aa34"/>

When Mitsuba is compiled with the default settings, it internally uses linear RGB to represent col-
ors, so these values can directly be used. However, when configured for doing spectral rendering, a
suitable color spectrum with the requested RGB reflectance must be found. This is a tricky problem,
since there is an infinite number of spectra with this property.

Mitsuba uses a method by Smits et al. [19] to find a “plausible” spectrum that is as smooth as
possible. To do so, it uses one of two methods depending on whether the spectrum contains a unitless
reflectance value, or a radiance-valued intensity.

<rgb name="spectrumProperty" intent="reflectance" value="0.2, 0.8, 0.4"/>
<rgb name="spectrumProperty" intent="illuminant" value="0.2, 0.8, 0.4"/>

The reflectance intent is used by default, so remember to set it to illuminant when defining the
brightness of a light source with the <rgb> tag.

When spectral power or reflectance distributions are obtained from measurements (e.g. at 10nm
intervals), they are usually quite unwiedy and can clutter the scene description. For this reason, there
is yet another way to pass a spectrum by loading it from an external file:

<spectrum name="spectrumProperty" filename="measuredSpectrum.spd"/>

The file should contain a single measurement per line, with the corresponding wavelength in nanome-
ters and the measured value separated by a space. Comments are allowed. Here is an example:

This file contains a measured spectral power/reflectance distribution
406.13 0.703313
413.88 0.744563
422.03 0.791625
430.62 0.822125
435.09 0.834000
...

Finally, it is also possible to specify the spectral distribution of a black body emitter, where the
temperature is given in Kelvin.

<blackbody name="spectrumProperty" temperature="5000K"/>

Note that attaching a black body spectrum to the intensity property of a luminaire introduces
physical units into the rendering process of Mitsuba, which is ordinarily a unitless system7.

Specifically, the black body spectrum has units of power (W) per unit area (m−2) per steradian
(sr−1) per unit wavelength (nm−1). Assuming that the scene is modeled in units of meters, the spectral
power distribution of pixels rendered by a perspective camera will then have the exact same units (i.e.
W ⋅m−2 ⋅ sr−1 ⋅ nm−1).

If these units are inconsistent with your scene, you may use the optional multiplier attribute:
7Thismeans that the units of pixel values in a rendering are completely dependent on the units of the user input, including
the unit of world-space distance and the units of the light source emission profile.

22

5. Scene file format 5.1. Property types

<!-- Oops, the scene is modeled in centimeters, not meters -->
<blackbody name="spectrumProperty" temperature="5000K" multiplier="0.01"/>

5.1.4. Vectors, Positions

Points and vectors can be specified as follows:

<point name="pointProperty" x="3" y="4" z="5"/>
<vector name="vectorProperty" x="3" y="4" z="5"/>

It is important that whatever you choose as world-space units (meters, inches, etc.) is used consis-
tently in all places.

5.1.5. Transformations

Transformations are the only kind of property that require more than a single tag. The idea is that,
starting with the identity, one can build up a transformation using a sequence of commands. For
instance, a transformation that does a translation followed by a rotation might be written like this:

<transform name="trafoProperty">
<translate x="-1" y="3" z="4"/>
<rotate y="1" angle="45"/>

</transform>

Mathematically, each incremental transformation in the sequence is left-multiplied onto the current
one. The following choices are available:

• Translations, e.g.

<translate x="-1" y="3" z="4"/>

• Rotations around a specified direction. The angle is given in degrees, e.g.

<rotate x="0.701" y="0.701" z="0" angle="180"/>

• Scaling operations. The coefficients may also be negative to obtain a flip, e.g.

<scale value="5"/> <!-- uniform scale -->
<scale x="2" y="1" z="-1"/> <!-- non-unform scale -->

• Explicit 4×4 matrices, e.g

<matrix value="0 -0.53 0 -1.79 0.92 0 0 8.03 0 0 0.53 0 0 0 0 1"/>

• LookAt transformations — this is primarily useful for setting up cameras (and spot lights). The
origin coordinates specify the camera origin, target is the point that the camera will look
at, and the (optional) up parameter determines the “upward” direction in the final rendered
image. The up parameter is not needed for spot lights.

<lookAt origin="10, 50, -800" target="0, 0, 0" up="0, 1, 0"/>

Cordinates that are zero (for translate and rotate) or one (for scale) do not explicitly have to
be specified.

23

5. Scene file format 5.2. Instancing

5.2. Instancing

Quite often, you will find yourself using an object (such as a material) in many places. To avoid having
to declare it over and over again, which wastes memory, you can make use of references. Here is an
example of how this works:

<scene version="0.3.0">
<texture type="bitmap" id="myImage">

<string name="filename" value="textures/myImage.jpg"/>
</texture>

<bsdf type="diffuse" id="myMaterial">
<!-- Reference the texture named myImage and pass it

to the BRDF as the reflectance parameter -->
<ref name="reflectance" id="myImage"/>

</bsdf>

<shape type="obj">
<string name="filename" value="meshes/myShape.obj"/>

<!-- Reference the material named myMaterial -->
<ref id="myMaterial"/>

</shape>
</scene>

By providing a unique id attribute in the object declaration, the object is bound to that identifier
upon instantiation. Referencing this identifier at a later point (using the <ref id="..."/> tag) will
add the instance to the parent object, with no further memory allocation taking place. Note that some
plugins expect their child objects to be named8. For this reason, a name can also be associated with
the reference.

Note that while this feature is meant to efficiently handle materials, textures, and participating
media that are referenced from multiple places, it cannot be used to instantiate geometry—if this
functionality is needed, take a look at the instance plugin.

5.3. Including external files

A scene can be split into multiple pieces for better readability. to include an external file, please use
the following command:

<include filename="nested-scene.xml"/>

In this case, the file nested-scene.xml must be a proper scene file with a <scene> tag at the
root. This feature is sometimes very convenient in conjunction with the -D key=value flag of the
mitsuba command line renderer (see the previous section for details). This lets you include differ-
ent parts of a scene configuration by changing the command line parameters (and without having to
touch the XML file):

<include filename="nested-scene-$version.xml"/>

8For instance, material plugins such as diffuse require that nested texture instances explicitly specify the parameter to
which they want to bind (e.g. “reflectance”).

24

6. Plugin reference 6. Plugin reference

6. Plugin reference

25

6. Plugin reference 6.1. Shapes

6.1. Shapes

This section presents an overview of the shape plugins that are released along with the renderer.
In Mitsuba, shapes define surfaces that mark transitions between different types of materials. For

instance, a shape could describe a boundary between air and a solid object, such as a piece of rock.
Alternatively, a shape can mark the beginning of a region of space that isn’t solid at all, but rather
contains a participating medium, such as smoke or steam. Finally, a shape can be used to create an
object that emits light on its own.

Shapes are usually declared along with a surface scattering model (named “BSDF”, see Section 6.2
for details). This BSDF characterizes what happens at the surface. In the XML scene description
language, this might look like the following:

<scene version="0.3.0">
<shape type="... shape type ...">

... shape parameters ...

<bsdf type="... bsdf type ...">
... bsdf parameters ..

</bsdf>

<!-- Alternatively: reference a named BSDF that
has been declared previously

<ref id="myBSDF"/>
-->

</shape>
</scene>

When a shape marks the transition to a participating medium (e.g. smoke, fog, ..), it is furthermore
necessary to provide information about the two media that lie at the interior and exterior of the shape.
This informs the renderer about what happens in the region of space surrounding the surface.

<scene version="0.3.0">
<shape type="... shape type ...">

... shape parameters ...

<medium name="interior" type="... medium type ...">
... medium parameters ...

</medium>

<medium name="exterior" type="... medium type ...">
... medium parameters ...

</medium>

<!-- Alternatively: reference named media that
have been declared previously

<ref name="interior" id="myMedium1"/>
<ref name="exterior" id="myMedium2"/>

-->
</shape>

</scene>

26

6. Plugin reference 6.1. Shapes

You may have noticed that the previous XML example dit not make any mention of surface scat-
tering models (BSDFs). In Mitsuba, such a shape declaration creates an index-matched boundary.
This means that incident illumination will pass through the surface without undergoing any kind of
interaction. However, the renderer will still uses the information available in the shape to correctly
account for the medium change.

It is also possible to create index-mismatched boundaries between media, where some of the light
is affected by the boundary transition:

<scene version="0.3.0">
<shape type="... shape type ...">

... shape parameters ...

<bsdf type="... bsdf type ...">
... bsdf parameters ..

</bsdf>

<medium name="interior" type="... medium type ...">
... medium parameters ...

</medium>

<medium name="exterior" type="... medium type ...">
... medium parameters ...

</medium>

<!-- Alternatively: reference named media and BSDF
instances that have been declared previously

<ref id="myBSDF"/>
<ref name="interior" id="myMedium1"/>
<ref name="exterior" id="myMedium2"/>

-->
</shape>

</scene>

27

6. Plugin reference 6.1. Shapes

6.1.1. Sphere intersection primitive (sphere)

Parameter Type Description

center point Center of the sphere in object-space (Default: (0, 0, 0))

radius float Radius of the sphere in object-space units (Default: 1)

toWorld transform Specifies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space = world space))

flipNormals boolean Is the sphere inverted, i.e. should the normal vectors be
flipped? (Default: false, i.e. the normals point outside)

(a) Basic example, see Listing 2 (b) A textured sphere with the default parameterization

This shape plugin describes a simple sphere intersection primitive. It should always be preferred
over sphere approximations modeled using triangles.

When using a sphere as the base object of an area luminaire, Mitsuba will switch to a special sphere
luminaire sampling strategy [18] that works much better than the default approach. The resulting
variance reduction makes it preferable to model most light sources as sphere luminaires (Figure 1).

<shape type="sphere">
<transform name="toWorld">

<scale value="2"/>
<translate x="1" y="0" z="0"/>

</transform>
<bsdf type="diffuse"/>

</shape>

<shape type="sphere">
<point name="center" x="1" y="0" z="0"/>
<float name="radius" value="2"/>
<bsdf type="diffuse"/>

</shape>

Listing 2: Asphere can either be configured using a lineartoWorld transformation or thecenter andradius
parameters (or both). The above two declarations are equivalent.

28

6. Plugin reference 6.1. Shapes

(a) Spherical area light modeled using triangles (b) Spherical area light modeled using the sphere plugin

Figure 1: Area lights built from the combination of the area and sphere plugins produce renderings that
have an overall lower variance.

<shape type="sphere">
<point name="center" x="0" y="1" z="0"/>
<float name="radius" value="1"/>

<luminaire type="area">
<blackbody name="intensity" temperature="7000K"/>

</luminaire>
</shape>

Listing 3: Instantiation of a sphere luminaire

29

6. Plugin reference 6.1. Shapes

6.1.2. Cylinder intersection primitive (cylinder)

Parameter Type Description

p0 point Object-space starting point of the cylinder’s centerline (De-
fault: (0, 0, 0))

p1 point Object-space endpoint of the cylinder’s centerline (Default:
(0, 0, 1))

radius float Radius of the cylinder in object-space units (Default: 1)

toWorld transform Specifies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space = world space))

(a) Cylinder with the default one-sided shading (b) Cylinder with two-sided shading, see Listing 4

This shape plugin describes a simple cylinder intersection primitive. It should always be preferred
over approximations modeled using triangles. Note that the cylinder does not have endcaps – also,
it’s interior has inward-facing normals, which most scattering models in Mitsuba will treat as fully
absorbing. If this is not desirable, consider using the twosided plugin.

<shape type="cylinder">
<float name="radius" value="0.3"/>
<bsdf type="twosided">

<bsdf type="diffuse"/>
</bsdf>

</shape>

Listing 4: A simple example for instantiating a cylinder, whose interior is visible

30

6. Plugin reference 6.1. Shapes

6.1.3. Wavefront OBJ mesh loader (obj)

Parameter Type Description

filename string Filename of the OBJ file that should be loaded

faceNormals boolean When set to true, Mitsuba will use face normals when ren-
dering the object, which will give it a faceted apperance.
(Default: false)

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

toWorld transform Specifies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space = world space))

recenter boolean When set to true, the geometry will be uniformly scaled
and shifted to so that its object-space footprint fits into
[−1, 1]3.

31

6. Plugin reference 6.1. Shapes

6.1.4. Shape group for geometry instancing (shapegroup)

Parameter Type Description

(Nested plugin) shape One ormore shapes that should bemade available for geom-
etry instancing

This plugin implements a container for shapes that should be made available for geometry instanc-
ing. Any shapes placed in a shapegroup will not be visible on their own—instead, the renderer will
precompute ray intersection acceleration data structures so that they can efficiently be referenced
many times using the instance plugin. This is useful for rendering things like forests, where only a
few distinct types of trees have to be kept in memory.

<!-- Declare a named shape group containing two objects -->
<shape type="shapegroup" id="myShapeGroup">

<shape type="ply">
<string name="filename" value="data.ply"/>
<bsdf type="roughconductor"/>

</shape>

<shape type="sphere">
<transform name="toWorld">

<scale value="5"/>
<translate y="20"/>

</transform>
<bsdf type="diffuse"/>

</shape>
</shape>

<!-- Instantiate the shape group without
any kind of transformation -->

<shape type="instance">
<ref id="myShapeGroup"/>

</shape>

<!-- Instantiate another version of the shape
group, but rotated, scaled, and translated -->

<shape type="instance">
<ref id="myShapeGroup"/>

<transform name="toWorld">
<rotate x="1" angle="45"/>
<scale value="1.5"/>
<translate z="10"/>

</transform>
</shape>

Listing 5: An example of geometry instancing

32

6. Plugin reference 6.1. Shapes

6.1.5. Geometry instance (instance)

Parameter Type Description

(Nested plugin) shapegroup A reference to a shape group that should be instantiated

toWorld transform Specifies an optional linear instance-to-world transforma-
tion. (Default: none (i.e. instance space = world space))

This plugin implements a geometry instance used to efficiently replicate geometry many times. For
details, please refer to the shapegroup plugin.

33

6. Plugin reference 6.1. Shapes

6.1.6. Animated geometry instance (animatedinstance)

Parameter Type Description

filename string Filename of an animated transformation

(Nested plugin) shapegroup A reference to a shape group that should be instantiated

This plugin implements an animated geometry instance, i.e. one or more shapes that are undergo-
ing ridgid transformations over time.

The input file should contain a binary / serialized AnimatedTransform data structure – for details,
please refer to the C++ implementation of this class.

34

6. Plugin reference 6.1. Shapes

6.1.7. Serialized mesh loader (serialized)

Parameter Type Description

filename string Filename of the gemoetry file that should be loaded

faceNormals boolean When set to true, Mitsuba will use face normals when ren-
dering the object, which will give it a faceted apperance.
(Default: false)

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

toWorld transform Specifies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space = world space))

This plugin represents the most space and time-efficient way of getting geometry into Mitsuba. It
uses a highly efficient lossless compressed format for geometry storage. Th format will be explained
on this page in a subsequent revision of the documentation.

35

6. Plugin reference 6.1. Shapes

6.1.8. Hair intersection shape (hair)

Parameter Type Description

filename string Filename of the hair data file that should be loaded

radius float Radius of the hair segments (Default: 0.05).

angleThreshold float For performance reasons, the plugin will merge adjacent
hair segments when the angle of their tangent directions is
below than this value (in degrees). (Default: 1).

toWorld transform Specifies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space = world space))

Figure 2: Aclose-up of the hair shape renderedwith a diffuse scatteringmodel (an actual hair scatteringmodel
will be needed for realistic apperance)

The plugin implements a space-efficient acceleration structure for hairs made from many straight
cylindrical hair segments with miter joints. The underlying idea is that intersections with straight
cylindrical hairs can be found quite efficiently, and curved hairs are easily approximated using a series
of such segments.

The plugin supports two different input formats: a simple (but not particularly efficient) ASCII
format containing the coordinates of a hair vertex on every line. An empty line marks the beginning
of a new hair, e.g.
.....
-18.5498 -21.7669 22.8138
-18.6358 -21.3581 22.9262
-18.7359 -20.9494 23.0256

-30.6367 -21.8369 6.78397
-30.7289 -21.4145 6.76688
-30.8226 -20.9933 6.73948
.....

There is also a binary format, which starts with the identifier “BINARY_HAIR” (11 bytes), followed
by the number of vertices as a 32-bit little endian integer. The remainder of the file consists of the
vertex positions stored as single-precision XYZ coordinates (again in little-endian byte ordering). To
mark the beginning of a new hair strand, a single +∞ floating point value can be inserted between
the vertex data.

36

6. Plugin reference 6.1. Shapes

6.1.9. PLY (Stanford Triangle Format) mesh loader (ply)

Parameter Type Description

filename string Filename of the PLY file that should be loaded

faceNormals boolean When set to true, Mitsuba will use face normals when ren-
dering the object, which will give it a faceted apperance.
(Default: false)

flipNormals boolean Optional flag to flip all normals. (Default: false, i.e. the
normals are left unchanged).

toWorld transform Specifies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space = world space))

srgb boolean When set to true, any vertex colors will be interpreted as
sRGB, instead of linear RGB (Default: true).

(a) The PLY plugin is useful for loading heavy geometry.
(Thai statue courtesy of XYZ RGB)

(b) The Stanford bunny loaded with faceNormals=true.
Note the faceted appearance.

This plugin is based on the library libply by Ares Lagae (http://people.cs.kuleuven.be/
~ares.lagae/libply).

37

http://people.cs.kuleuven.be/~ares.lagae/libply
http://people.cs.kuleuven.be/~ares.lagae/libply

6. Plugin reference 6.2. Surface scattering models

6.2. Surface scattering models

Smooth plastic material (plastic) Smooth di�use material (diffuse)

Smooth di�use transmitter (difftrans)

Smooth conducting material (conductor)

Di�use scattering

Rough/bumpy surface

Rough plastic material (roughplastic)

Smooth surface Exterior (normal-facing side)

Interior-facing side

Clear coating

Tinted layer

Scattering layer

Arbitrary BSDF?

Incident illumination

Scattered illumination
(secondary component)

Scattered illumination
(tertiary component)

Lobe shape/presence is up
to the nested model

Scattered illumination
(primary component)

Smooth dielectric material (dielectric)

Rough conducting material (roughconductor)Rough di�use material (roughdiffuse)

Smooth dielectric coating (coating)

?

Legend

?

?

Bump map modi�er (bump)

?

?

Rough dielectric material (roughdielectric)

?

?
Single-scattering layer (hk)

Figure 3: Schematic overview of the most important surface scattering models in Mitsuba (shown in the style
ofWeidlich andWilkie [23]). The arrows indicate possible outcomes of an interaction with a surface
that has the respective model applied to it.

Surface scattering models describe the manner in which light interacts with surfaces in the scene.
They conveniently summarize the mesoscopic scattering processes that take place within the material
and cause it to look the way it does. This represents one central component of the material system in
Mitsuba—another part of the renderer concerns itself with what happens in between surface interac-
tions. For more information on this aspect, please refer to Sections 6.5 and 6.4. This section presents
an overview of all surface scattering models that are supported, along with their parameters.

BSDFs

To achieve realistic results, Mitsuba comes with a library of both general-purpose surface scattering
models (smooth or rough glass, metal, plastic, etc.) and specializations to particular materials (woven
cloth, masks, etc.). Some model plugins fit neither category and can best be described as modifiers
that are applied on top of one or more scattering models.

Throughout the documentation and within the scene description language, the word BSDF is used
synonymously with the term “surface scattering model”. This is an abbreviation for Bidirectional Scat-

38

6. Plugin reference 6.2. Surface scattering models

tering Distribution Function, a more precise technical term.
In Mitsuba, BSDFs are assigned to shapes, which describe the visible surfaces in the scene. In

the scene description language, this assignment can either be performed by nesting BSDFs within
shapes, or they can be named and then later referenced by their name. The following fragment shows
an example of both kinds of usages:

<scene version="0.3.0">
<!-- Creating a named BSDF for later use -->
<bsdf type=".. BSDF type .." id="myNamedMaterial">

<!-- BSDF parameters go here -->
</bsdf>

<shape type="sphere">
<!-- Example of referencing a named material -->
<ref id="myNamedMaterial"/>

</shape>

<shape type="sphere">
<!-- Example of instantiating an unnamed material -->
<bsdf type=".. BSDF type ..">

<!-- BSDF parameters go here -->
</bsdf>

</shape>
</scene>

It is generally more economical to use named BSDFs when they are used in several places, since this
reduces Mitsuba’s internal memory usage.

Correctness considerations

A vital consideration when modeling a scene in a physically-based rendering system is that the used
materials do not violate physical properties, and that their arrangement is meaningful. For instance,

IOR = 1.33

IOR = 1.50
IOR = 1.00

Interior IOR Exterior IORSurface

1.33

1.33

1.00

1.50

1.50 1.00

(a) Slice through a glass
�lled with water

(b) Description using
 surfaces in Mitsuba

(c) Detailed IOR transitions

(normals in gray)

Figure 4: Some of the scatteringmodels inMitsuba need to know the indices of refraction on the exterior and
interior-facing side of a surface. It is therefore important to decompose the mesh into meaningful
separate surfaces corresponding to each index of refraction change. The example here shows such a
decomposition for a water-filled Glass.

39

6. Plugin reference 6.2. Surface scattering models

imagine having designed an architectural interior scene that looks good except for a white desk that
seems a bit too dark. A closer inspection reveals that it uses a Lambertian material with a diffuse
reflectance of 0.9.

In many rendering systems, it would be feasible to increase the reflectance value above 1.0 in such
a situation. But in Mitsuba, even a small surface that reflects a little more light than it receives will
likely break the available rendering algorithms, or cause them to produce otherwise unpredictable
results. In fact, we should rather change the lighting setup and then reduce the material’s reflectance,
since it is quite unlikely that we could find a real-world desk with a reflectance as high as 0.9.

As an example of the necessity for a meaningful material arrangement, consider the glass model
illustrated in Figure 4. Here, careful thinking is needed to decompose the object into boundaries
that mark index of refraction-changes. If this is done incorrectly and a beam of light can potentially
pass through a sequence of incompatible index of refraction changes (e.g. 1.00 → 1.33 followed by
1.50 → 1.33), the output is undefined and will quite likely even contain inaccuracies in parts of the
scene that are some distance away from the glass.

40

6. Plugin reference 6.2. Surface scattering models

6.2.1. Smooth diffuse material (diffuse)

Parameter Type Description

reflectance spectrum or
texture

Specifies the diffuse albedo of the material (Default: 0.5)

(a) Homogeneous reflectance, see Listing 6 (b) Textured reflectance, see Listing 7
The smooth diffuse material (also referred to as “Lambertian”) represents an ideally diffuse material

with a user-specified amount of reflectance. Any received illumination is scattered so that the surface
looks the same independently of the direction of observation.

Apart from a homogeneous reflectance value, the plugin can also accept a nested or referenced
texture map to be used as the source of reflectance information, which is then mapped onto the shape
based on its UV parameterization. When no parameters are specified, the model uses the default of
50% reflectance.

Note that this material is one-sided—that is, observed from the back side, it will be completely
black. If this is undesirable, consider using the twosided BRDF adapter plugin.

<bsdf type="diffuse">
<srgb name="reflectance" value="#6d7185"/>

</bsdf>

Listing 6: A diffuse material, whose reflectance is specified as an sRGB color

<bsdf type="diffuse">
<texture type="bitmap" name="reflectance">

<string name="filename" value="wood.jpg"/>
</texture>

</bsdf>

Listing 7: A diffuse material with a texture map

41

6. Plugin reference 6.2. Surface scattering models

6.2.2. Rough diffuse material (roughdiffuse)

Parameter Type Description

reflectance spectrum or
texture

Specifies the diffuse albedo of the material. (Default: 0.5)

alpha spectrum or
texture

Specifies the roughness of the unresolved surface micro-
geometry using the root mean square (RMS) slope of the
microfacets. (Default: 0.2)

useFastApprox boolean This parameter selects between the full version of themodel
or a fast approximation that still retainsmost qualitative fea-
tures. (Default: false, i.e. use the high-quality version)

(a) Smooth diffuse surface (α = 0) (b) Very rough diffuse surface (α = 0.7)
Figure 5: The effect of switching from smooth to rough diffuse scattering is fairly subtle on this model—

generally, there will be higher reflectance at grazing angles, as well as an overall reduced contrast.

This reflectance model describes the interaction of light with a rough diffuse material, such as plas-
ter, sand, clay, or concrete, or “powdery” surfaces. The underlying theory was developed by Oren
and Nayar [13], who model the microscopic surface structure as unresolved planar facets arranged
in V-shaped grooves, where each facet is an ideal diffuse reflector. The model takes into account
shadowing, masking, as well as interreflections between the facets.

Since the original publication, this approach has been shown to be a good match for many real-
world materials, particularly compared to Lambertian scattering, which does not take surface rough-
ness into account.

The implementation in Mitsuba uses a surface roughness parameter α that is slightly different from
the slope-area variance in the original 1994 paper. The reason for this change is to make the parameter
α portable across different models (i.e. roughdielectric, roughplastic, roughconductor).

To get an intuition about the effect of the parameter α, consider the following approximate differen-
tiation: a value of α = 0.001−0.01 corresponds to a material with slight imperfections on an otherwise
smooth surface (for such small values, the model will behave identically to diffuse), α = 0.1 is rela-
tively rough, and α = 0.3 − 0.7 is extremely rough (e.g. an etched or ground surface).

Note that this material is one-sided—that is, observed from the back side, it will be completely
black. If this is undesirable, consider using the twosided BRDF adapter plugin.

42

6. Plugin reference 6.2. Surface scattering models

6.2.3. Smooth dielectric material (dielectric)

Parameter Type Description

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the reflectance compo-
nent (Default: 1.0)

specular⤦
Transmittance

spectrum or
texture

Optional factor used to modulate the transmittance compo-
nent (Default: 1.0)

(a) Air↔Water (IOR: 1.33) interface.
See Listing 8.

(b) Air↔Diamond (IOR: 2.419) (c) Air↔Glass (IOR: 1.504) interface
with absorption. See Listing 9.

This plugin models an interface between two dielectric materials having mismatched indices of re-
fraction (for instance, water and air). Exterior and interior IOR values can be specified independently,
where “exterior” refers to the side that contains the surface normal. When no parameters are given,
the plugin activates the defaults, which describe a borosilicate glass BK7/air interface.

In this model, the microscopic structure of the surface is assumed to be perfectly smooth, result-
ing in a degenerate9 BSDF described by a Dirac delta distribution. For a similar model that instead
describes a rough surface microstructure, take a look at the roughdielectric plugin.

<shape type="...">
<bsdf type="dielectric">

<string name="intIOR" value="water"/>
<string name="extIOR" value="air"/>

</bsdf>
<shape>

Listing 8: A simple air-to-water interface

When using this model, it is crucial that the scene contains meaningful and mutually compatible
indices of refraction changes—see Figure 4 for a description of what this entails.

In many cases, we will want to additionally describe the medium within a dielectric material. This
requires the use of a rendering technique that is aware of media (e.g. the volumetric path tracer). An
example of how one might describe a slightly absorbing piece of glass is given on the next page:

9Meaning that for any given incoming ray of light, the model always scatters into a discrete set of directions, as opposed
to a continuum.

43

6. Plugin reference 6.2. Surface scattering models

<shape type="...">
<bsdf type="dielectric">

<float name="intIOR" value="1.504"/>
<float name="extIOR" value="1.0"/>

</bsdf>

<medium type="homogeneous" name="interior">
<rgb name="sigmaS" value="0, 0, 0"/>
<rgb name="sigmaA" value="4, 4, 2"/>

</medium>
<shape>

Listing 9: A glass material with absorption (based on the Beer-Lambert law). This material can only be used
by an integrator that is aware of participating media.

Name Value Name Value

vacuum 1.0 bromine 1.661
helium 1.00004 water ice 1.31
hydrogen 1.00013 fused quartz 1.458
air 1.00028 pyrex 1.470
carbon dioxide 1.00045 acrylic glass 1.49
water 1.3330 polypropylene 1.49
acetone 1.36 bk7 1.5046
ethanol 1.361 sodium chloride 1.544
carbon tetrachloride 1.461 amber 1.55
glycerol 1.4729 pet 1.575
benzene 1.501 diamond 2.419
silicone oil 1.52045

Table 1: This table lists all supported material names along with along with their associated index of re-
fraction at standard conditions. These material names can be used with the plugins dielectric,
roughdielectric, plastic, roughplastic, as well as coating.

44

6. Plugin reference 6.2. Surface scattering models

6.2.4. Rough dielectric material (roughdielectric)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [21],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

(iv) as: Anisotropic Phong-style microfacet distribution
proposed by Ashikhmin and Shirley [1].

alpha float or
texture

Specifies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope
of the microfacets. This parameter is only valid when
distribution=beckmann/phong/ggx. (Default: 0.1).

alphaU, alphaV float or
texture

Specifies the anisotropic roughness values along the tangent
and bitangent directions. These parameter are only valid
when distribution=as. (Default: 0.1).

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the reflectance compo-
nent (Default: 1.0)

specular⤦
Transmittance

spectrum or
texture

Optional factor used to modulate the transmittance compo-
nent (Default: 1.0)

This plugin implements a realistic microfacet scattering model for rendering rough interfaces be-
tween dielectric materials, such as a transition from air to ground glass. Microfacet theory describes
rough surfaces as an arrangement of unresolved and ideally specular facets, whose normal directions
are given by a specially chosen microfacet distribution. By accounting for shadowing and masking
effects between these facets, it is possible to reproduce the important off-specular reflections peaks
observed in real-world measurements of such materials.

This plugin is essentially the “roughened” equivalent of the (smooth) plugin dielectric. For
very low values of α, the two will be very similar, though scenes using this plugin will take longer to
render due to the additional computational burden of tracking surface roughness.

45

6. Plugin reference 6.2. Surface scattering models

(a) Anti-glare glass (Beckmann, α = 0.02) (b) Rough glass (Beckmann, α = 0.1)

The implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-
faces” by Walter et al. [21]. It supports several different types of microfacet distributions and has
a texturable roughness parameter. Exterior and interior IOR values can be specified independently,
where “exterior” refers to the side that contains the surface normal. Similar to the dielectric plugin,
IOR values can either be specified numerically, or based on a list of known materials (see Table 1 for
an overview). When no parameters are given, the plugin activates the default settings, which describe
a borosilicate glass BK7/air interface with a light amount of roughness modeled using a Beckmann
distribution.

To get an intuition about the effect of the surface roughness parameter α, consider the following
approximate differentiation: a value of α = 0.001−0.01 corresponds to a material with slight imperfec-
tions on an otherwise smooth surface finish, α = 0.1 is relatively rough, and α = 0.3− 0.7 is extremely
rough (e.g. an etched or ground finish).

Please note that when using this plugin, it is crucial that the scene contains meaningful and mutu-
ally compatible index of refraction changes—see Figure 4 for an example of what this entails. Also,
note that the importance sampling implementation of this model is close, but not always a perfect a
perfect match to the underlying scattering distribution, particularly for high roughness values and
when the ggxmicrofacet distribution is used. Hence, such renderings may converge slowly.

Technical details

When rendering with the Ashikhmin-Shirley or Phong microfacet distributions, a conversion is used
to turn the specified α roughness value into the exponents of these distributions. This is done in a
way, such that the different distributions all produce a similar appearance for the same value of α.

The Ashikhmin-Shirley microfacet distribution allows the specification of two distinct roughness
values along the tangent and bitangent directions. This can be used to provide a material with a
“brushed” appearance. The alignment of the anisotropy will follow the UV parameterization of the
underlying mesh in this case. This also means that such an anisotropic material cannot be applied to
triangle meshes that are missing texture coordinates.

46

6. Plugin reference 6.2. Surface scattering models

(a) Ground glass (GGX, α=0.304, Listing 10) (b) Textured roughness (Listing 11)

<bsdf type="roughdielectric">
<string name="distribution" value="ggx"/>
<float name="alpha" value="0.304"/>
<string name="intIOR" value="bk7"/>
<string name="extIOR" value="air"/>

</bsdf>

Listing 10: Amaterial definition for ground glass

<bsdf type="roughdielectric">
<string name="distribution" value="beckmann"/>
<float name="intIOR" value="1.5046"/>
<float name="extIOR" value="1.0"/>

<texture name="alpha" type="bitmap">
<string name="filename" value="roughness.exr"/>

</texture>
</bsdf>

Listing 11: A texture can be attached to the roughness parameter

47

6. Plugin reference 6.2. Surface scattering models

6.2.5. Smooth conductor (conductor)

Parameter Type Description

material string Nameof amaterial preset, see Table 2.(Default: Cu / copper)

eta spectrum Real part of the material’s index of refraction (Default:
based on the value of material)

k spectrum Imaginary part of the material’s index of refraction, also
known as absorption coefficient. (Default: based on the
value of material)

specular⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the reflectance compo-
nent (Default: 1.0)

(a) Measured copper material (the default), rendered us-
ing 30 spectral samples between 360 and 830nm

(b) Measured gold material (Listing 12)

This plugin implements a perfectly smooth interface to a conducting material, such as a metal. For
a similar model that instead describes a rough surface microstructure, take a look at the separately
available roughconductor plugin.

In contrast to dielectric materials, conductors do not transmit any light. Their index of refraction
is complex-valued and tends to undergo considerable changes throughout the visible color spectrum.

To facilitate the tedious task of specifying spectrally-varying index of refraction information, Mit-
suba ships with a set of measured data for several materials, where visible-spectrum information was
publicly available10.

Note that Table 2 also includes several popular optical coatings, which are not actually conductors.
These materials can also be used with this plugin, though note that the plugin will ignore any refrac-
tion component that the actual material might have had. The table also contains a few birefingent
materials, which are split into separate measurements corresponding to their two indices of refrac-
tion (named “ordinary” and “extraordinary ray”).

When using this plugin, you should ideally compile Mitsuba with support for spectral rendering to
get the most accurate results. While it also works in RGB mode, the computations will be much more

10These index of refraction values are identical to the data distributed with PBRT. They are originally from the Luxpop
database (www.luxpop.com) and are based on data by Palik et al. [14] and measurements of atomic scattering factors
made by the Center For X-Ray Optics (CXRO) at Berkeley and the Lawrence Livermore National Laboratory (LLNL).

48

www.luxpop.com

6. Plugin reference 6.2. Surface scattering models

approximate in this case. Also note that this material is one-sided—that is, observed from the back
side, it will be completely black. If this is undesirable, consider using the twosided BRDF adapter
plugin.

<shape type="...">
<bsdf type="conductor">

<string name="material" value="Au"/>
</bsdf>

<shape>

Listing 12: Amaterial configuration for a smooth conductor with measured gold data

It is also possible to load spectrally varying index of refraction data from two external files containing
the real and imaginary components, respectively (see Section 5.1.3 for details on the file format):

<shape type="...">
<bsdf type="conductor">

<spectrum name="eta" filename="conductorIOR.eta.spd"/>
<spectrum name="k" filename="conductorIOR.k.spd"/>

</bsdf>
<shape>

Listing 13: Rendering a smooth conductor with custom data

Preset(s) Description Preset(s) Description

a-C Amorphous carbon Na_palik Sodium
Ag Silver Nb, Nb_palik Niobium
Al Aluminium Ni_palik Nickel
AlAs, AlAs_palik Cubic aluminium arsenide Rh, Rh_palik Rhodium
AlSb, AlSb_palik Cubic aluminium antimonide Se, Se_palik Selenium (ord. ray)
Au Gold Se-e, Se-e_palik Selenium (extr. ray)
Be, Be_palik Polycrystalline beryllium SiC, SiC_palik Hexagonal silicon carbide
Cr Chromium SnTe, SnTe_palik Tin telluride
CsI, CsI_palik Cubic caesium iodide Ta, Ta_palik Tantalum
Cu, Cu_palik Copper Te, Te_palik Trigonal tellurium (ord. ray)
Cu2O, Cu2O_palik Copper (I) oxide Te-e, Te-e_palik Trigonal tellurium (extr. ray)
CuO, CuO_palik Copper (II) oxide ThF4, ThF4_palik Polycryst. thorium (IV) fluoride
d-C, d-C_palik Cubic diamond TiC, TiC_palik Polycrystalline titanium carbide
Hg, Hg_palik Mercury TiN, TiN_palik Titanium nitride
HgTe, HgTe_palik Mercury telluride TiO2, TiO2_palik Tetragonal titan. dioxide (ord. ray)
Ir, Ir_palik Iridium TiO2-e, TiO2-e_palik Tetragonal titan. dioxide (extr. ray)
K, K_palik Polycrystalline potassium VC, VC_palik Vanadium carbide
Li, Li_palik Lithium V_palik Vanadium
MgO, MgO_palik Magnesium oxide VN, VN_palik Vanadium nitride
Mo, Mo_palik Molybdenum W Tungsten

Table 2: This table lists all supported materials that can be passed into the conductor and roughconductor
plugins. Note that some of them are not actually conductors—this is not a problem, they can be used
regardless (though only the reflection component and no transmission will be simulated). In most
cases, there aremultiple entries for eachmaterial, which representmeasurements by different authors.

49

6. Plugin reference 6.2. Surface scattering models

6.2.6. Rough conductor material (roughconductor)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [21],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

(iv) as: Anisotropic Phong-style microfacet distribution
proposed by Ashikhmin and Shirley [1].

alpha float or
texture

Specifies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope
of the microfacets. This parameter is only valid when
distribution=beckmann/phong/ggx. (Default: 0.1).

alphaU, alphaV float or
texture

Specifies the anisotropic roughness values along the tangent
and bitangent directions. These parameter are only valid
when distribution=as. (Default: 0.1).

material string Nameof amaterial preset, see Table 2.(Default: Cu / copper)

eta spectrum Real part of the material’s index of refraction (Default:
based on the value of material)

k spectrum Imaginary part of the material’s index of refraction (the ab-
sorption coefficient). (Default: based on material)

specular⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the reflectance compo-
nent (Default: 1.0)

This plugin implements a realistic microfacet scattering model for rendering rough conducting
materials, such as metals. It can be interpreted as a fancy version of the Cook-Torrance model and
should be preferred over empirical models like phong and ward when possible.

Microfacet theory describes rough surfaces as an arrangement of unresolved and ideally specular
facets, whose normal directions are given by a specially chosenmicrofacet distribution. By accounting
for shadowing and masking effects between these facets, it is possible to reproduce the important off-
specular reflections peaks observed in real-world measurements of such materials.

This plugin is essentially the “roughened” equivalent of the (smooth) plugin conductor. For very
low values of α, the two will be very similar, though scenes using this plugin will take longer to render
due to the additional computational burden of tracking surface roughness.

50

6. Plugin reference 6.2. Surface scattering models

(a) Rough copper (Beckmann, α = 0.1) (b) Vertically brushed aluminium (Ashikhmin-Shirley,
αu = 0.05, αv = 0.3), see Listing 14

The implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-
faces” by Walter et al. [21]. It supports several different types of microfacet distributions and has a
texturable roughness parameter. To facilitate the tedious task of specifying spectrally-varying index of
refraction information, this plugin can access a set of measured materials for which visible-spectrum
information was publicly available (see Table 2 for the full list).

When no parameters are given, the plugin activates the default settings, which describe copper
with a light amount of roughness modeled using a Beckmann distribution.

To get an intuition about the effect of the surface roughness parameter α, consider the following
approximate differentiation: a value of α = 0.001−0.01 corresponds to a material with slight imperfec-
tions on an otherwise smooth surface finish, α = 0.1 is relatively rough, and α = 0.3− 0.7 is extremely
rough (e.g. an etched or ground finish). Values significantly above that are probably not too realistic.

Technical details
When rendering with the Ashikhmin-Shirley or Phong microfacet distributions, a conversion is used
to turn the specified α roughness value into the exponents of these distributions. This is done in a
way, such that the different distributions all produce a similar appearance for the same value of α.

The Ashikhmin-Shirley microfacet distribution allows the specification of two distinct roughness
values along the tangent and bitangent directions. This can be used to provide a material with a
“brushed” appearance. The alignment of the anisotropy will follow the UV parameterization of the
underlying mesh in this case. This also means that such an anisotropic material cannot be applied to
triangle meshes that are missing texture coordinates.

When using this plugin, you should ideally compile Mitsuba with support for spectral rendering to
get the most accurate results. While it also works in RGB mode, the computations will be much more
approximate in this case. Also note that this material is one-sided—that is, observed from the back
side, it will be completely black. If this is undesirable, consider using the twosided BRDF adapter.

<bsdf type="roughconductor">
<string name="material" value="Al"/>
<string name="distribution" value="as"/>
<float name="alphaU" value="0.05"/>
<float name="alphaV" value="0.3"/>

</bsdf>

Listing 14: Amaterial definition for brushed aluminium

51

6. Plugin reference 6.2. Surface scattering models

6.2.7. Smooth plastic material (plastic)

Parameter Type Description

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: polypropylene / 1.49)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the specular component
(Default: 1.0)

diffuse⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the diffuse component
(Default: 0.5)

(a) A rendering with the default parameters (b) A rendering with custom parameters (Listing 15)
This plugin describes a perfectly smooth plastic-like dielectric material with internal scattering.

The model interpolates between ideally specular and ideally diffuse reflection based on the Fresnel
reflectance (i.e. it does so in a way that depends on the angle of incidence). Similar to the dielectric
plugin, IOR values can either be specified numerically, or based on a list of known materials (see
Table 1 for an overview).

Since it is very simple and fast, this model is often a better choice than the phong, ward, and
roughplastic plugins when rendering very smooth plastic-like materials.

<bsdf type="plastic">
<srgb name="diffuseReflectance" value="#18455c"/>
<float name="intIOR" value="1.9"/>

</bsdf>

Listing 15: A shiny material whose diffuse reflectance is specified using sRGB

52

6. Plugin reference 6.2. Surface scattering models

6.2.8. Rough plastic material (roughplastic)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [21],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

alpha float Specifies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope of
the microfacets. (Default: 0.1).

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: polypropylene / 1.49)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the specular reflectance
component (Default: 1.0)

diffuse⤦
Reflectance

spectrum or
texture

Optional factor used to modulate the diffuse reflectance
component (Default: 0.5)

(a) Beckmann, α = 0.1 (b) GGX, α = 0.3
This plugin implements a realistic microfacet scattering model for rendering rough dielectric ma-

terials with internal scattering, such as plastic. It can be interpreted as a fancy version of the Cook-
Torrance model and should be preferred over empirical models like phong and ward when possible.

53

6. Plugin reference 6.2. Surface scattering models

(c) Beckmann, α = 0.05, diffuseReflectance=0

Microfacet theory describes rough surfaces as an arrangement of unresolved and ideally specular
facets, whose normal directions are given by a specially chosenmicrofacet distribution. By accounting
for shadowing and masking effects between these facets, it is possible to reproduce the important off-
specular reflections peaks observed in real-world measurements of such materials.

This plugin is essentially the “roughened” equivalent of the (smooth) plugin plastic. For very low
values of α, the two will be very similar, though scenes using this plugin will take longer to render
due to the additional computational burden of tracking surface roughness.

The model uses the integrated specular reflectance to interpolate between the specular and diffuse
components (i.e. any light that is not scattered specularly is assumed to contribute to the diffuse
component). Similar to the dielectric plugin, IOR values can either be specified numerically, or
based on a list of known materials (see Table 1 for an overview).

The implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-
faces” by Walter et al. [21]. It supports several different types of microfacet distributions. Note that the
choices are a bit more restricted here—in comparison to other rough scattering models in Mitsuba,
the roughness cannot be textured, and anisotropic microfacet distributions are not allowed.

When no parameters are given, the plugin activates the defaults, which describe a white polypropy-
lene plastic material with a light amount of roughness modeled using the Beckmann distribution.

To get an intuition about the effect of the surface roughness parameter α, consider the following
approximate differentiation: a value of α = 0.001−0.01 corresponds to a material with slight imperfec-
tions on an otherwise smooth surface finish, α = 0.1 is relatively rough, and α = 0.3− 0.7 is extremely
rough (e.g. an etched or ground finish). Values significantly above that are probably not too realistic.

When rendering with the Phong microfacet distributions, a conversion is used to turn the specified
α roughness value into the Phong exponent. This is done in a way, such that the different distributions
all produce a similar appearance for the same value of α.

<bsdf type="roughplastic">
<string name="distribution" value="beckmann"/>
<float name="alpha" value="0.05"/>
<float name="intIOR" value="1.61"/>
<specturm name="diffuseReflectance" value="0"/>

</bsdf>

Listing 16: Amaterial definition for rough, black laquer.

54

?

?

?

6. Plugin reference 6.2. Surface scattering models

6.2.9. Smooth dielectric coating (coating)

Parameter Type Description

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

thickness float Denotes the thickness of the layer (to model absorption —
should be specified in inverse units of sigmaA) (Default: 1)

sigmaA spectrum or
texture

The absorption coefficient of the coating layer. (Default: 0,
i.e. there is no absorption)

(Nested plugin) bsdf A nested BSDF model that should be coated.

(a) Rough copper (b) The same material coated with a single layer of clear
varnish (see Listing 17)

This plugin implements a smooth dielectric coating (e.g. a layer of varnish) in the style of the
paper “Arbitrarily Layered Micro-Facet Surfaces” by Weidlich and Wilkie [23]. Any BSDF in Mitsuba
can be coated using this plugin, and multiple coating layers can even be applied in sequence. This
allows designing interesting custom materials like car paint or glazed metal foil. The coating layer can
optionally be tinted (i.e. filled with an absorbing medium), in which case this model also accounts
for the directionally dependent absorption within the layer.

Note that the plugin discards illumination that undergoes internal reflection within the coating.
This can lead to a noticeable energy loss for materials that reflect much of their energy near or below
the critical angle (i.e. diffuse or very rough materials). Therefore, users are discouraged to use this
plugin to coat smooth diffuse materials, since there is a separately available plugin named plastic,
which covers the same case and does not suffer from energy loss.

Evaluating the internal component of this model entails refracting the incident and exitant rays
through the dielectric interface, followed by querying the nested material with this modified direction
pair. The result is attenuated by the two Fresnel transmittances and the absorption, if any.

55

6. Plugin reference 6.2. Surface scattering models

(a) thickness = 0 (b) thickness = 1 (c) thickness = 5 (d) thickness = 15

Figure 6: The effect of the layer thickness parameter on a tinted coating (sigmaT = (0.1, 0.2, 0.5))

<bsdf type="coating">
<float name="intIOR" value="1.7"/>

<bsdf type="roughconductor">
<string name="material" value="Cu"/>
<float name="alpha" value="0.1"/>

</bsdf>
</bsdf>

Listing 17: Rough copper coated with a transparent layer of varnish

(a) Coated rough copper with a bumpmap applied on top (b) Bump mapped rough copper with a coating on top

Figure 7: Some interesting materials can be created simply by applying Mitsuba’s material modifiers in differ-
ent orders.

56

?

?

?

6. Plugin reference 6.2. Surface scattering models

6.2.10. Rough dielectric coating (roughcoating)

Parameter Type Description

distribution string Specifies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. This is the default.

(ii) ggx: New distribution proposed by Walter et al. [21],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

alpha float Specifies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope of
the microfacets. (Default: 0.1).

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

sigmaA spectrum or
texture

The absorption coefficient of the coating layer. (Default: 0,
i.e. there is no absorption)

(Nested plugin) bsdf A nested BSDF model that should be coated.

(a) Rough gold coated with a smooth varnish layer (b) Rough gold coatedwith a rough (α=0.03) varnish layer

This plugin implements a very approximate11 model that simulates a rough dielectric coating. It is
11The model only accounts for roughness in the specular reflection and Fresnel transmittance through the interface. The

interior model receives incident illumination that is transformed as if the coating was smooth. While that’s not quite
correct, it is a convenient workaround when the coating plugin produces specular highlights that are too sharp.

57

6. Plugin reference 6.2. Surface scattering models

essentially the roughened version of coating. Any BSDF in Mitsuba can be coated using this plugin,
and multiple coating layers can even be applied in sequence. This allows designing interesting custom
materials. The coating layer can optionally be tinted (i.e. filled with an absorbing medium), in which
case this model also accounts for the directionally dependent absorption within the layer.

Note that the plugin discards illumination that undergoes internal reflection within the coating.
This can lead to a noticeable energy loss for materials that reflect much of their energy near or below
the critical angle (i.e. diffuse or very rough materials).

The implementation here is influenced by the paper “Arbitrarily Layered Micro-Facet Surfaces” by
Weidlich and Wilkie [23].

58

?

?

?

6. Plugin reference 6.2. Surface scattering models

6.2.11. Bump map modifier (bump)

Parameter Type Description

(Nested plugin) texture The luminance of this texture specifies the amount of
displacement. The implementation ignores any constant
offset—only changes in the luminance matter.

(Nested plugin) bsdf A BSDF model that should be affected by the bump map

(a) Bump map based on tileable diagonal lines (b) An irregular bump map
Bump mapping [2] is a simple technique for cheaply adding surface detail to a rendering. This is

done by perturbing the shading coordinate frame based on a displacement height field provided as
a texture. This method can lend objects a highly realistic and detailed appearance (e.g. wrinkled or
covered by scratches and other imperfections) without requiring any changes to the input geometry.

The implementation in Mitsuba uses the common approach of ignoring the usually negligible
texture-space derivative of the base mesh surface normal. As side effect of this decision, it is invariant
to constant offsets in the height field texture—only variations in its luminance cause changes to the
shading frame.

Note that the magnitude of the height field variations influences the strength of the displacement. If
desired, the scale texture plugin can be used to magnify or reduce the effect of a bump map texture.

<bsdf type="bump">
<!-- The bump map is applied to a rough metal BRDF -->
<bsdf type="roughconductor"/>

<texture type="scale">
<!-- The scale of the displacement gets multiplied by 10x -->
<float name="scale" value="10"/>

<texture type="bitmap">
<string name="filename" value="bumpmap.png"/>

</texture>
</texture>

</bsdf>

Listing 18: A rough metal model with a scaled image-based bump map

59

6. Plugin reference 6.2. Surface scattering models

6.2.12. Modified Phong BRDF (phong)

Parameter Type Description

exponent float or
texture

Specifies the Phong exponent (Default: 30).

specular⤦
Reflectance

spectrum or
texture

Specifies the weight of the specular reflectance component.
(Default: 0.2)

diffuse⤦
Reflectance

spectrum or
texture

Specifies the weight of the diffuse reflectance component
(Default: 0.5)

(a) Exponent= 60 (b) Exponent= 300

This plugin implements the modified Phong reflectance model as described in [15] and [11]. This
empirical model is mainly included for historical reasons—its use in new scenes is discouraged, since
significantly more realistic models have been developed since 1975.

If possible, it is recommended to switch to a BRDF that is based on microfacet theory and includes
knowledge about the material’s index of refraction. In Mitsuba, two good alternatives to phong are
the plugins roughconductor and roughplastic (depending on the material type).

When using this plugin, note that the diffuse and specular reflectance components should add up
to a value less than or equal to one (for each color channel). Otherwise, they will automatically be
scaled appropriately to ensure energy conservation.

60

6. Plugin reference 6.2. Surface scattering models

6.2.13. Anisotropic Ward BRDF (ward)

Parameter Type Description

variant string Determines the variant of the Ward model to use:

(i) ward:The originalmodel byWard [22]—suffers from
energy loss at grazing angles.

(ii) ward-duer: Corrected Ward model with lower en-
ergy loss at grazing angles [3]. Does not always con-
serve energy.

(iii) balanced: Improved version of the ward-duer
model with energy balance at all angles [4].

alphaU, alphaV float or
texture

Specifies the anisotropic roughness values along the tangent
and bitangent directions. (Default: 0.1).

specular⤦
Reflectance

spectrum or
texture

Specifies the weight of the specular reflectance component.
(Default: 0.2)

diffuse⤦
Reflectance

spectrum or
texture

Specifies the weight of the diffuse reflectance component
(Default: 0.5)

(a) αu = 0.1, αv = 0.3 (b) αu = 0.3, αv = 0.1

This plugin implements the anisotropic Ward reflectance model and several extensions. They are
described in the papers

(i) “Measuring and Modeling Anisotropic Reflection” by Greg Ward [22]

(ii) “Notes on the Ward BRDF” by Bruce Walter [20]

(iii) “An Improved Normalization for the Ward Reflectance Model” by Arne Dür [3]

(iv) “A New Ward BRDF Model with Bounded Albedo” by Geisler-Moroder et al. [4]

Like the Phong BRDF, the Ward model does not take the Fresnel reflectance of the material into
account. In an experimental study by Ngan et al. [12], the Ward model performed noticeably worse
than models based on microfacets.

61

6. Plugin reference 6.2. Surface scattering models

For this reason, it is usually preferable to switch to a microfacet model that incorporates knowledge
about the material’s index of refraction. In Mitsuba, two such alternatives to ward are given by the
plugins roughconductor and roughplastic (depending on the material type).

When using this plugin, note that the diffuse and specular reflectance components should add up
to a value less than or equal to one (for each color channel). Otherwise, they will automatically be
scaled appropriately to ensure energy conservation.

62

6. Plugin reference 6.2. Surface scattering models

6.2.14. Hanrahan-Krueger BSDF (hk)

Parameter Type Description

material string Name of a material preset, see Table 3. (Default: skin1)

sigmaS spectrum or
texture

Specifies the scattering coefficient of the internal layer. (De-
fault: based on material)

sigmaA spectrum or
texture

Specifies the absorption coefficient of the internal layer.
(Default: based on material)

sigmaT & albedo spectrum or
texture

Optional: Alternatively, the scattering and absorption coef-
ficientsmay also be specified using the extinction coefficient
sigmaT and the single-scattering albedo. Note that only one
of the parameter passing conventions can be used at a time
(i.e. use either sigmaS&sigmaA or sigmaT&albedo)

thickness float Denotes the thickness of the layer. (should be specified in
inverse units of sigmaA and sigmaS) (Default: 1)

(Nested plugin) phase A nested phase function instance that represents the type of
scattering interactions occurring within the layer

(a) An index-matched scattering layer with parameters
σs = 2, σa = 0.1, thickness= 0.1

(b) Example of the HK model with a dielectric coating
(and the ketchupmaterial preset, see Listing 19)

Figure 8: Renderings using the uncoated and coated form of the Hanrahan-Krueger model.

This plugin provides an implementation of the Hanrahan-Krueger BSDF [5] for simulating single
scattering in thin index-matched layers filled with a random scattering medium. In addition, the im-
plementation also accounts for attenuated light that passes through the medium without undergoing
any scattering events.

This BSDF requires a phase function to model scattering interactions within the random medium.
When no phase function is explicitly specified, it uses an isotropic one (g = 0) by default. A sample
usage for instantiating the plugin is given on the next page:

63

6. Plugin reference 6.2. Surface scattering models

<bsdf type="hk">
<spectrum name="sigmaS" value="2"/>
<spectrum name="sigmaA" value="0.1"/>
<float name="thickness" value="0.1"/>

<phase type="hg">
<float name="g" value="0.8"/>

</phase>
</bsdf>

When used in conjuction with the coating plugin, it is possible to model refraction and reflection
at the layer boundaries when the indices of refraction are mismatched. The combination of these two
plugins then reproduces the full model as it was originally proposed by Hanrahan and Krueger [5].

Note that this model does not account for light that undergoes multiple scattering events within
the layer. This leads to energy loss, particularly at grazing angles, which can be seen in the left-hand
image of Figure 8. A solution is to use the sssbrdf plugin, which adds an approximate multiple
scattering component.

<bsdf type="coating">
<float name="extIOR" value="1.0"/>
<float name="intIOR" value="1.5"/>

<bsdf type="hk">
<string name="material" value="ketchup"/>
<float name="thickness" value="0.01"/>

</bsdf>
</bsdf>

Listing 19: A thin dielectric layer with measured ketchup scattering parameters

Note that when sigmaS = sigmaA = 0, or when thickness=0, any geometry associated with this
BSDF becomes invisible, as light will pass through unchanged.

The implementation in Mitsuba is based on code by Tom Kazimiers and Marios Papas. Marios
Papas has kindly verified the implementation of the coated and uncoated variants against both a path
tracer and a separate reference implementation.

64

6. Plugin reference 6.2. Surface scattering models

6.2.15. Irawan & Marschner woven cloth BRDF (irawan)

Parameter Type Description

filename string Path to a weave pattern description

repeatU, repeatV float Specifies the number of weave pattern repetitions over a
[0, 1]2 region of the UV parameterization

ksFactor float Multiplicative factor of the specular component

kdFactor float Multiplicative factor of the diffuse component

This plugin implements the Irawan & Marschner BRDF, a realistic model for rendering woven
materials. This spatially-varying reflectance model uses an explicit description of the underlying
weave pattern to create fine-scale texture and realistic reflections across a wide range of different
weave types. To use the model, you must provide a special weave pattern file—for an example of what
these look like, see the examples scenes available on the Mitsuba website.

A detailed explanation of the model is beyond the scope of this manual. For reference, it is de-
scribed in detail in the PhD thesis of Piti Irawan (“The Appearance of Woven Cloth” [7]). The code
in Mitsuba a modified port of a previous Java implementation by Piti, which has been extended with
a simple domain-specific weave pattern description language.

(a) Silk charmeuse (b) Cotton denim (c) Wool gabardine

(d) Polyester lining cloth (e) Silk shantung (f) Cotton twill

65

6. Plugin reference 6.2. Surface scattering models

6.2.16. Two-sided BRDF adapter (twosided)

Parameter Type Description

(Nested plugin) bsdf A nested BRDF that should be turned into a two-sided scat-
tering model.

(a) From this angle, the Cornell box scene shows visible
back-facing geometry

(b) Applying the twosided plugin fixes the rendering

By default, all non-transmissive scattering models in Mitsuba are one-sided — in other words, they
absorb all light that is received on the interior-facing side of any associated surfaces. Holes and visible
back-facing parts are thus exposed as black regions.

Usually, this is a good idea, since it will reveal modeling issues early on. But sometimes one is
forced to deal with improperly closed geometry, where the one-sided behavior is bothersome. In that
case, this plugin can be used to turn one-sided scattering models into proper two-sided versions of
themselves. The plugin has no parameters other than a required nested BSDF specification.

<bsdf type="twosided">
<bsdf type="diffuse">

<spectrum name="reflectance" value="0.4"/>
</bsdf>

</bsdf>

Listing 20: A two-sided diffuse material

66

6. Plugin reference 6.2. Surface scattering models

6.2.17. Mixture material (mixturebsdf)

Parameter Type Description

weights string A comma-separated list of BSDF weights

(Nested plugin) bsdf Multiple BSDF instances that should be mixed according to
the specified weights

(a) An admittedly not particularly realistic linear combi-
nation of diffuse and specular BSDFs (Listing 21)

This plugin implements a “mixture” material, which represents linear combinations of multiple
BSDF instances. Any surface scattering model in Mitsuba (be it smooth, rough, reflecting, or trans-
mitting) can be mixed with others in this manner to synthesize new models. There is no limit on how
many models can be mixed, but their combination weights must be non-negative and sum to a value
of one or less to ensure energy balance.

<bsdf type="mixturebsdf">
<string name="weights" value="0.7, 0.2"/>

<bsdf type="conductor">
<string name="material" value="Cr"/>

</bsdf>

<bsdf type="roughdiffuse">
<rgb name="reflectance" value=".7 1 .7"/>
<float name="alpha" value="0.4"/>

</bsdf>
</bsdf>

Listing 21: A material definition for a mixture of 70% smooth chromium, 20% of a greenish rough diffuse
material (and 10% absorption)

67

6. Plugin reference 6.2. Surface scattering models

6.2.18. Diffuse transmitter (difftrans)

Parameter Type Description

transmittance spectrum or
texture

Specifies the diffuse transmittance of the material (Default:
0.5)

(a) The model with default parameters
This BSDF models a non-reflective material, where any entering light loses its directionality and is

diffusely scattered from the other side. This model can be combined12 with a surface reflection model
to describe translucent substances that have internal multiple scattering processes (e.g. plant leaves).

12For instance using the mixturebsdf plugin.

68

6. Plugin reference 6.2. Surface scattering models

6.2.19. Opacity mask (mask)

Parameter Type Description

opacity spectrum or
texture

Specifies the per-channel opacity (where 1 = completely
opaque) (Default: 0.5).

(Nested plugin) bsdf A base BSDF model that represents the non-transparent
portion of the scattering

(a) Rendering without an opacity mask (b) Rendering with an opacity mask (Listing 22)

This plugin applies an opacity mask to add nested BSDF instance. It interpolates between perfectly
transparent and completely opaque based on the opacity parameter.

The transparency is implemented as a forward-facing Dirac delta distribution.

<bsdf type="mask">
<!-- Base material: a two-sided textured diffuse BSDF -->
<bsdf type="twosided">

<bsdf type="diffuse">
<texture name="reflectance" type="bitmap">

<string name="filename" value="leaf.jpg"/>
</texture>

</bsdf>
</bsdf>

<!-- Fetch the opacity mask from a bitmap -->
<texture name="opacity" type="bitmap">

<string name="filename" value="leaf_opacity.jpg"/>
<float name="gamma" value="1"/>

</texture>
</bsdf>

Listing 22: Material configuration for a transparent leaf

69

6. Plugin reference 6.2. Surface scattering models

6.2.20. Subsurface scattering BRDF (sssbrdf)

Parameter Type Description

material string Name of a material preset, see Table 3. (Default: skin1)

sigmaS spectrum or
texture

Specifies the scattering coefficient of the layer. (Default:
based on material)

sigmaA spectrum or
texture

Specifies the absorption coefficient of the layer. (Default:
based on material)

sigmaT & albedo spectrum or
texture

Optional: Alternatively, the scattering and absorption coef-
ficientsmay also be specified using the extinction coefficient
sigmaT and the single-scattering albedo. Note that only one
of the parameter passing conventions can be used at a time
(i.e. use either sigmaS&sigmaA or sigmaT&albedo)

intIOR float or
string

Interior index of refraction specified numerically or using a
known material name. (Default: based on material)

extIOR float or
string

Exterior index of refraction specified numerically or using
a known material name. (Default: air / 1.000277)

g float or
string

Specifies the phase function anisotropy— see the hg plugin
for details (Default: 0, i.e. isotropic)

alpha float Specifies the roughness of the unresolved surface micro-
geometry. (Default: 0.0, i.e. the surface has a smooth fin-
ish)

This plugin implements a BRDF scattering model that emulates interactions with a participating
medium embedded inside a dielectric layer. By approximating these events using a BRDF, any scat-
tered illumination is assumed to exit the material directly at the original point of incidence. To account
for internal light transport with different incident and exitant positions, please refer to Sections 6.5
and 6.4.

Internally, the model is implemented by instantiating a Hanrahan-Krueger BSDF for single scat-
tering in an infinitely thick layer together with an approximate multiple scattering component based
on Jensen’s [9] integrated dipole BRDF. These are then embedded into a dielectric layer using either
the coating or roughcoating plugins depending on whether or not alpha=0. This yields a very
convenient parameterization of a scattering model that behaves similarly to a coated diffuse material,
but expressed in terms of the scattering and absorption coefficients sigmaS and sigmaA.

70

6. Plugin reference 6.3. Textures

6.3. Textures

The following section describes the available texture sources. In Mitsuba, textures are objects that
can be attached to scattering model parameters supporting the “texture” type (see Section 6.2 for
examples).

71

6. Plugin reference 6.3. Textures

6.3.1. Vertex color passthrough texture (vertexcolors)

When rendering with a mesh that contains vertex colors, this plugin exposes the underlying color
data as a texture. Currently, this is only supported by the PLY file format loader.

Here is an example:

<shape type="ply">
<string name="filename" value="mesh.ply"/>

<bsdf type="diffuse">
<texture type="vertexcolors" name="reflectance"/>

</bsdf>
</shape>

Listing 23: Rendering a PLY file with vertex colors

72

6. Plugin reference 6.3. Textures

6.3.2. Bitmap texture (bitmap)

Parameter Type Description

filename string Filename of the bitmap to be loaded

gamma float Gamma value of the source bitmap file (Default: automatic,
i.e. linear for EXR input, and sRGB for everything else.)

filterType string Specifies the texture filturing that should be used for
lookups

(i) ewa: Elliptically weighted average (a.k.a. anisotropic
filtering). This produces the best quality

(ii) trilinear: Simple trilinear (isotropic) filtering.

(iii) none: No filtering, do nearest neighbor lookups.

Default: ewa.

wrapMode string This parameter defines the behavior of the texture outside
of the [0, 1] uv range.

(i) repeat: Repeat the texture (i.e. uv coordinates are
taken modulo 2)

(ii) clamp: Clamp uv coordinates to [0, 1]

(iii) black: Switch to a zero-valued texture

(iv) white: Switch to a one-valued texture

Default: repeat.

maxAnisotropy float Specifies an upper limit on the amount of anisotropy of ewa
lookups (Default: 8)

uscale, vscale float Multiplicative factors that should be applied to UV values
before a lookup

uoffset, voffset float Numerical offset that should be applied to UV values before
a lookup

This plugin implements a bitmap-based texture, which supports the following file formats:

• OpenEXR

• JPEG

• PNG (Portable Network Graphics)

• TGA (Targa)

• BMP (Windows bitmaps)

The plugin internally converts all bitmap data into a linear space to ensure a proper workflow.

73

6. Plugin reference 6.3. Textures

6.3.3. Procedural grid texture (gridtexture)

Parameter Type Description

color0 spectrum Color values of the background (Default: 0.2)

color1 spectrum Color value of the lines (Default: 0.4)

lineWidth float Width of the grid lines in UV space (Default: 0.01)

uscale, vscale float Multiplicative factors that should be applied to UV values
before a lookup

uoffset, voffset float Numerical offset that should be applied to UV values before
a lookup

This plugin implements a simple procedural grid texture.

74

6. Plugin reference 6.3. Textures

6.3.4. Checkerboard (checkerboard)

Parameter Type Description

color0, color1 spectrum Color values for the two differently-colored patches (De-
fault: 0.4 and 0.2)

uscale, vscale float Multiplicative factors that should be applied to UV values
before a lookup

uoffset, voffset float Numerical offset that should be applied to UV values before
a lookup

This plugin implements a simple procedural checkerboard texture.

75

6. Plugin reference 6.4. Subsurface scattering

6.4. Subsurface scattering

TBD

76

6. Plugin reference 6.5. Participating media

6.5. Participating media

TBD

77

6. Plugin reference 6.5. Participating media

6.5.1. Heterogeneous participating medium (heterogeneous)

Parameter Type Description

method string Specifies the sampling method that is used to generate scat-
tering events within the medium.

(i) simpson: Sampling is done by inverting a determinis-
tic quadrature rule based on composite Simpson inte-
gration over small ray segments.

(ii) woodcock: Generate samples using Woodcock track-
ing. This is usually faster and guaranteed to be unbi-
ased, but has the disadvantage of not providing certain
information that is required by bidirectional render-
ing techniques.

Default: woodcock

density volume Volumetric data source that supplies the medium densities
(in inverse scene units)

albedo volume Volumetric data source that supplies the single-scattering
albedo

orientation volume Optional: volumetric data source that supplies the local par-
ticle orientations throughout the medium

densityMultiplier float Optional multiplier that will be applied to the density
parameter. Provided for convenience when accomodating
data based on different units, or to simply tweak the density
of the medium. (Default: 1)

(Nested plugin) phase A nested phase function that describes the directional scat-
tering properties of the medium. When none is speci-
fied, the renderer will automatically use an instance of
isotropic.

This plugin provides a flexible heterogeneous medium implementation, which acquires its data
from nested volume instances. These can be constant, use a procedural function, or fetch data from
disk, e.g. using a memory-mapped density grid. See Section 6.7 for details.

Instead of allowing separate volumes to be provided for the scattering absorption parameterssigmaS
and sigmaA (as is done in homogeneous, this class instead takes the approach of enforcing a spec-
trally uniform value of sigmaT, which must be provided using a nested scalar-valued volume named
density.

Another nested spectrum-valued albedo volume must also be provided, which is used to compute
the scattering coefficient σs using the expression σs = density ∗ albedo (i.e. ’albedo’ contains the
single-scattering albedo of the medium.

Optionally, one can also provide an vector-valued orientation volume, which contains local
particle orientation that will be passed to scattering models that support this, such as a the Micro-
flake or Kajiya-Kay phase functions.

78

6. Plugin reference 6.5. Participating media

6.5.2. Homogeneous participating medium (homogeneous)

Parameter Type Description

material string Name of a material preset, see Table 3. (Default: skin1)

sigmaA, sigmaS spectrum Absorption and scattering coefficients of the medium in in-
verse scene units. These parameters are mutually exclusive
with sigmaT and albedo (Default: configured based on
material)

sigmaT, albedo spectrum Extinction coefficient in inverse scene units and a (unit-
less) single-scattering albedo. These parameters are mutu-
ally exclusive with sigmaA and sigmaS (Default: config-
ured based on material)

densityMultiplier float Optional multiplier that will be applied to the sigma* pa-
rameters. Provided for convenience when accomodating
data based on different units, or to simply tweak the density
of the medium. (Default: 1)

(Nested plugin) phase A nested phase function that describes the directional scat-
tering properties of the medium. When none is speci-
fied, the renderer will automatically use an instance of
isotropic.

This class implements a flexible homogeneous participating medium with support for arbitrary
phase functions and various medium sampling methods. It provides several ways of configuring
the medium properties. Either, a material preset can be loaded using the material parameter—see
Table 3 for details. Alternatively, when specifying parameters by hand, they can either be provided
using the scattering and absorption coefficients, or by declaring the extinction coefficient and single
scattering albedo (whichever is more convenient). Mixing these parameter initialization methods is
not allowed.

All scattering parameters (named sigma*) should be provided in inverse scene units. For instance,
when a world-space distance of 1 unit corresponds to a meter, the scattering coefficents should have
units of inverse meters. For convenience, the densityMultiplier parameter can be used to correct
the units. For instance, when the scene is in meters and the coefficients are in inverse millimeters, set
densityMultiplier to 1000.

<medium id="myMedium" type="homogeneous">
<spectrum name="sigmaS" value="1"/>
<spectrum name="sigmaA" value="0.05"/>

<phase type="hg">
<float name="g" value="0.7"/>

</phase>
</medium>

Listing 24: Declaration of a forward scattering medium with high albedo

Note: Rendering media that have a spectrally varying extinction coefficient can be tricky, since all
commonly used medium sampling methods suffer from high variance in that case. Here, it may often
make more sense to render several monochromatic images separately (using only the coefficients for

79

6. Plugin reference 6.5. Participating media

a single channel) and then merge them back into a RGB image. There is a mtsutil (Section 4.4)
plugin named joinrgb that will perform this RGB merging process.

Name Name

apple potato
chicken1 skimmilk
chicken2 skin1
cream skin2
ketchup spectralon
marble wholemilk

Table 3: This table lists all supported medium material presets. The values are from Jensen et al. [9] using
units of 1

mm , so remember to set densityMultiplier appropriately when your scene is not in units
of millimeters. These material names can be used with the plugins homogeneous, dipole, hk, and
sssbrdf.

80

6. Plugin reference 6.6. Phase functions

6.6. Phase functions

This section contains a description of all implemented medium scattering models, which are also
known as phase functions. These are very similar in principle to surface scattering models (or BSDFs),
and essentially describe where light travels after hitting a particle within the medium.

The most commonly used models for smoke, fog, and other homogeneous media are isotropic
scattering (isotropic) and the Henyey-Greenstein phase function (hg). Mitsuba also supports
anisotropic media, where the behavior of the medium changes depending on the direction of light
propagation (e.g. in volumetric representations of fabric). These are the Kajiya-Kay (kkay) and Micro-
flake (microflake) models.

Finally, there is also a phase function for simulating scattering in planetary atmospheres (rayleigh).

81

6. Plugin reference 6.6. Phase functions

6.6.1. Isotropic phase function (isotropic)

(a) Isotropic (b) Anisotropic micro-flakes

Figure 9: Heterogeneous volume renderings of a scarf model with isotropic and anisotropic phase functions.

This phase function simulates completely uniform scattering, where all directionality is lost after a
single scattering interaction. It does not have any parameters.

82

6. Plugin reference 6.6. Phase functions

6.6.2. Henyey-Greenstein phase function (hg)

Parameter Type Description

g float This parameter must be somewhere in the range −1 to 1
(but not equal to −1 or 1). It denotes the mean cosine
of scattering interactions. A value greater than zero indi-
cates that medium interactions predominantly scatter in-
cident light into a similar direction (i.e. the medium is
forward-scattering), whereas values smaller than zero cause
the medium to be scatter more light in the opposite direc-
tion.

This plugin implements the phase function model proposed by Henyey and Greenstein [6]. It is
parameterizable from backward- (g < 0) through isotropic- (g = 0) to forward (g > 0) scattering.

83

6. Plugin reference 6.6. Phase functions

6.6.3. Rayleigh phase function (rayleigh)

Scattering by particles that are much smaller than the wavelength of light (e.g. individual molecules
in the atmosphere) is well-approximated by the Rayleigh phase function. This plugin implements an
unpolarized version of this scattering model (i.e the effects of polarization are ignored). This plugin
is useful for simulating scattering in planetary atmospheres.

This model has no parameters.

84

6. Plugin reference 6.6. Phase functions

6.6.4. Kajiya-Kay phase function (kkay)

This plugin implements the Kajiya-Kay [10] phase function for volumetric rendering of fibers, e.g.
hair or cloth.

The function is normalized so that it has no energy loss when s̨=1 and illumination arrives perpen-
dicularly to the surface.

85

6. Plugin reference 6.6. Phase functions

6.6.5. Micro-flake phase function (microflake)

Parameter Type Description

stddev float Standard deviation of the micro-flake normals. This speci-
fies the roughness of the fibers in the medium.

(a) stddev=0.2 (b) stddev=0.05

This plugin implements the anisotropic micro-flake phase function described in “A radiative trans-
fer framework for rendering materials with anisotropic structure” by Wenzel Jakob, Adam Arbree,
Jonathan T. Moon, Kavita Bala, and Steve Marschner [8].

The implementation in this plugin is specific to rough fibers and uses a Gaussian-type flake dis-
tribution. It is much faster than the spherical harmonics approach proposed in the original paper.
This distribution, as well as the implemented sampling method, are described in the paper “Building
Volumetric Appearance Models of Fabric using Micro CT Imaging” by Shuang Zhao, Wenzel Jakob,
Steve Marschner, and Kavita Bala [24].

Note: this phase function must be used with a medium that specifies the local fiber orientation at
different points in space. Please refer to heterogeneous for details.

86

6. Plugin reference 6.6. Phase functions

6.6.6. Mixture phase function (mixturephase)

Parameter Type Description

weights string A comma-separated list of phase function weights

(Nested plugin) phase Multiple phase function instances that should be mixed ac-
cording to the specified weights

This plugin implements a “mixture” scattering model, which represents linear combinations of
multiple phase functions. There is no limit on how many phase function can be mixed, but their
combination weights must be non-negative and sum to a value of one or less to ensure energy balance.

87

6. Plugin reference 6.7. Volume data sources

6.7. Volume data sources

This section covers the different types of volume data sources included with Mitsuba. These plug-
ins are intended to be used together with the heterogeneous medium plugin and provide three-
dimensional spatially varying density, albedo, and orientation fields.

88

6. Plugin reference 6.7. Volume data sources

6.7.1. Grid-based volume data source (gridvolume)

Parameter Type Description

filename string Specifies the filename of the volume data file to be loaded

sendData boolean When this parameter is set totrue, the implementationwill
send all volume data to other network render nodes. Other-
wise, they are expected to have access to an identical vol-
ume data file that can be mapped into memory. (Default:
false)

toWorld transform Optional linear transformation that should be applied to the
data

min, max point Optional parameter that can be used to re-scale the data so
that it lies in the bounding box between min and max.

This class implements access to memory-mapped volume data stored on a 3D grid using a simple
binary exchange format. The format uses a little endian encoding and is specified as follows:

Position Content

Bytes 1-3 ASCII Bytes ’V’, ’O’, and ’L’
Byte 4 File format version number (currently 3)
Bytes 5-8 Encoding identifier (32-bit integer). The following choices are available:

1. Dense float32-based representation

2. Dense float16-based representation (currently not supported by this
implementation)

3. Dense uint8-based representation (The range 0..255 will be mapped
to 0..1)

4. Dense quantized directions. The directions are stored in spherical co-
ordinates with a total storage cost of 16 bit per entry.

Bytes 9-12 Number of cells along the X axis (32 bit integer)
Bytes 13-16 Number of cells along the Y axis (32 bit integer)
Bytes 17-20 Number of cells along the Z axis (32 bit integer)
Bytes 21-24 Number of channels (32 bit integer, supported values: 1 or 3)
Bytes 25-48 Axis-aligned bounding box of the data stored in single precision (order:

xmin, ymin, zmin, xmax, ymax, zmax)
Bytes 49-* Binary data of the volume stored in the specified encoding. The data

are ordered so that the following C-style indexing operation makes sense
after the file has been mapped into memory:
data[((zpos*yres + ypos)*xres + xpos)*channels + chan]
where (xpos, ypos, zpos, chan) denotes the lookup location.

Note that Mitsuba expects that entries in direction volumes are either zero or valid unit vectors.

89

6. Plugin reference 6.7. Volume data sources

When using this data source to represent floating point density volumes, please ensure that the
values are all normalized to lie in the range [0, 1]—otherwise, the Woocock-Tracking integration
method in heterogeneous will produce incorrect results.

90

6. Plugin reference 6.7. Volume data sources

6.7.2. Caching volume data source (volcache)

Parameter Type Description

blockSize integer Size of the individual cache blocks (Default: 8, i.e. 8×8×8)

voxelWidth float Width of a voxel (in a cache block) expressed inworld-space
units. (Default: set to the ray marching step size of the
nested medium)

memoryLimit integer Maximum allowed memory usage in MiB. (Default: 1024,
i.e. 1 GiB)

toWorld transform Optional linear transformation that should be applied to the
volume data

(Nested plugin) volume A nested volume data source

This plugin can be added between the renderer and another data source, for which it caches all
data lookups using a LRU scheme. This is useful when the nested volume data source is expensive to
evaluate.

The cache works by performing on-demand rasterization of subregions of the nested volume into
blocks (8 × 8 × 8 by default). These are kept in memory until a user-specifiable threshold is exeeded,
after which point a least recently used (LRU) policy removes records that haven’t been accessed in a
long time.

91

6. Plugin reference 6.7. Volume data sources

6.7.3. Constant-valued volume data source (constvolume)

Parameter Type Description

value float or
spectrum or
vector

Specifies the value of the volume

This plugin provides a volume data source that is constant throughout its domain. Depending on
how it is used, its value can either be a scalar, a color spectrum, or a 3D vector.

<medium type="heterogeneous">
<volume type="constvolume" name="density">

<float name="value" value="1"/>
</volume>
<volume type="constvolume" name="albedo">

<rgb name="value" value="0.9 0.9 0.7"/>
</volume>
<volume type="constvolume" name="orientation">

<vector name="value" x="0" y="1" z="0"/>
</volume>

<!-- remaining parameters for
the 'heterogeneous' plugin -->

</medium>

Listing 25: Definition of a heterogeneous medium with homogeneous contents

92

6. Plugin reference 6.8. Luminaires

6.8. Luminaires

TBD

93

6. Plugin reference 6.8. Luminaires

6.8.1. Sun luminaire (sun)

Parameter Type Description

turbidity float This parameter determines the amount of scattering parti-
cles (or ‘haze’) in the atmosphere. Smaller values (∼ 2) pro-
duce a clear blue sky, larger values (∼ 8) lead to an overcast
sky, and a very high values (∼ 20) cause a color shift towards
orange and red. (Default: 3)

day integer Solar day used to compute the sun’s position. Must be in the
range between 1 and 365. (Default: 180)

time float Fractional time used to compute the sun’s position. A time
of 4:15 PM corresponds to 16.25. (Default: 15.00)

latitude,
longitude

float These two parameters specify the oberver’s latitude and lon-
gitude in degrees, which are required to compute the sun’s
position. (Default: 35.6894, 139.6917 — Tokyo, Japan)

standardMeridian integer Denotes the standard meridian of the time zone for finding
the sun’s position (Default: 135 — Japan standard time)

sunDirection vector Allows to manually override the sun direction in world
space. When this value is provided, parameters pertain-
ing to the computation of the sun direction (day, time,
latitude, longitude, and standardMeridian) are
unnecessary. (Default: none)

resolution integer Specifies the resolution of the precomputed image that is
used to represent the sun environment map (Default: 256)

sunScale float This parameter can be used to scale the the amount of illumi-
nation emitted by the sun luminaire, for instance to change
its units. To switch from photometric (W/m2

⋅sr) to arbitrary
but convenient units in the [0, 1] range, set this parameter
to 1e-5. (Default: 1)

94

6. Plugin reference 6.8. Luminaires

6.8.2. Skylight luminaire (sky)

Parameter Type Description

turbidity float This parameter determines the amount of scattering parti-
cles (or ‘haze’) in the atmosphere. Smaller values (∼ 2) pro-
duce a clear blue sky, larger values (∼ 8) lead to an overcast
sky, and a very high values (∼ 20) cause a color shift towards
orange and red. (Default: 3)

day integer Solar day used to compute the sun’s position. Must be in the
range between 1 and 365. (Default: 180)

time float Fractional time used to compute the sun’s position. A time
of 4:15 PM corresponds to 16.25. (Default: 15.00)

latitude,
longitude

float These two parameters specify the oberver’s latitude and lon-
gitude in degrees, which are required to compute the sun’s
position. (Default: 35.6894, 139.6917 — Tokyo, Japan)

standardMeridian integer Denotes the standard meridian of the time zone for finding
the sun’s position (Default: 135 — Japan standard time)

sunDirection vector Allows to manually override the sun direction in world
space. When this value is provided, parameters pertain-
ing to the computation of the sun direction (day, time,
latitude, longitude, and standardMeridian) are
unnecessary. (Default: none)

extend boolean Extend luminaire below the horizon? (Default: false)

resolution integer Specifies the resolution of the precomputed image that is
used to represent the sky environment map (Default: 256)

skyScale float This parameter can be used to scale the the amount of illumi-
nation emitted by the sky luminaire, for instance to change
its units. To switch from photometric (W/m2

⋅sr) to arbitrary
but convenient units in the [0, 1] range, set this parameter
to 1e-5. (Default: 1)

(a) 6AM (b) 8AM (c) 10AM (d) 12PM (e) 2PM (f) 4PM (g) 6PM (h) 8PM
Figure 10: Time series with the default settings (shown by projecting the sky onto a disk. East is left.)

This plugin implements the physically-based skylight model proposed by Preetham et al. [16]. It
can be used for realistic daylight renderings of scenes under clear and overcast skies, assuming that
the sky is observed from a position either on or close to the surface of the earth.

Numerous parameters allow changing the both the position on Earth, as well as the time of obser-
vation. These are used to compute the sun direction which, together with turbidity, constitutes the
main parameter of the model. If desired, the sun direction can also be specified manually.

95

6. Plugin reference 6.8. Luminaires

(a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8 (h) 9
Figure 11: Sky light for different turbidity values (fixed time & location)

Turbidity, the other important parameter, specifies the amount of atmospheric extinction due to
larger particles (tl), as opposed to molecules (tm). Lower values correspond to a clear sky, and higher
values produce illumination resembling that of a hazy, overcast sky. Formally, the turbidity is de-
fined as the ratio between the combined extinction cross-section and the cross-section only due to
molecules, i.e. T = tm+t l

tm . Values between 1 and 30 are possible, though the model will be most
accurate for values between 2 and 6, to which it was fit using numerical optimization.

The default coordinate system of the luminaire associates the up direction with the +Y axis. The
east direction is associated with +X and the north direction is equal to +Z. To change this coordinate
system, rotations can be applied using the toWorld parameter.

By default, the luminaire will not emit any light below the horizon, which means that these regions
will be black when they are observed directly. By setting the extend parameter to true, the emit-
ted radiance at the horizon will be extended to the entire bottom hemisphere. Note that this will
significantly increase the amount of illumination present in the scene.

For performance reasons, the implementation precomputes an environment map of the entire sky
that is then forwarded to the envmap plugin. The resolution of this environment map can affect the
quality of the result. Due to the smoothness of the sky illumination, resolution values of around
256 (the default) are usually more than sufficient.

Note that while the model encompasses sunrise and sunset configurations, it does not extend to the
night sky, where illumination from stars, galaxies, and the moon dominate. The model also currently
does not handle cloudy skies. The implementation in Mitsuba is based on code by Preetham et al. It
was ported by Tom Kazimiers.

<luminaire type="sky">
<transform name="toWorld">

<rotate x="1" angle="90"/>
</transform>

</luminaire>

Listing 26: Rotating the sky luminaire for scenes that use Z as the “up” direction

(a) 3 PM (b) 6 PM (c) 8 PM
Figure 12: Renderings with the plasticmaterial under default conditions

96

6. Plugin reference 6.8. Luminaires

6.8.3. Sun and sky luminaire (sunsky)

Parameter Type Description

turbidity float This parameter determines the amount of scattering parti-
cles (or ‘haze’) in the atmosphere. Smaller values (∼ 2) pro-
duce a clear blue sky, larger values (∼ 8) lead to an overcast
sky, and a very high values (∼ 20) cause a color shift towards
orange and red. (Default: 3)

day integer Solar day used to compute the sun’s position. Must be in the
range between 1 and 365. (Default: 180)

time float Fractional time used to compute the sun’s position. A time
of 4:15 PM corresponds to 16.25. (Default: 15.00)

latitude,
longitude

float These two parameters specify the oberver’s latitude and lon-
gitude in degrees, which are required to compute the sun’s
position. (Default: 35.6894, 139.6917 — Tokyo, Japan)

standardMeridian integer Denotes the standard meridian of the time zone for finding
the sun’s position (Default: 135 — Japan standard time)

sunDirection vector Allows to manually override the sun direction in world
space. When this value is provided, parameters pertain-
ing to the computation of the sun direction (day, time,
latitude, longitude, and standardMeridian) are
unnecessary. (Default: none)

extend boolean Extend luminaire below the horizon? (Default: false)

resolution integer Specifies the resolution of the precomputed image that is
used to represent the sky environment map (Default: 256)

skyScale float This parameter can be used to scale the the amount of illu-
mination emitted by the sky.

sunScale float This parameter can be used to scale the the amount of illu-
mination emitted by the sun.

This plugin implements the physically-based skylight model proposed by Preetham et al. [16]. It
can be used for realistic daylight renderings of scenes under clear and overcast skies, assuming that
the sky is observed from a position either on or close to the surface of the earth.

This is a convenience plugin, which has the sole purpose of instantiating sun and sky at the same
time. Please refer to these plugins individually for more detail

97

6. Plugin reference 6.8. Luminaires

6.8.4. Environment map luminaire (envmap)

Parameter Type Description

intensityScale float This parameter can be used to scale the the amount of illu-
mination emitted by the luminaire. (Default: 1)

This plugin implements a simple environment map luminaire with importance sampling. It uses
the scene’s bounding sphere to simulate an infinitely far-away light source and expects an EXR image
in latitude-longitude (equirectangular) format.

98

6. Plugin reference 6.9. Integrators

6.9. Integrators

In Mitsuba, the different rendering techniques are collectively referred to as integrators, since they
perform integration over a high-dimensional space. Each integrator represents a specific approach
for solving the light transport equation—usually favored in certain scenarios, but at the same time af-
fected by its own set of intrinsic limitations. Therefore, it is important to carefully select an integrator
based on user-specified accuracy requirements and properties of the scene to be rendered.

In Mitsuba’s XML description language, a single integrator is usually instantiated by declaring it at
the top level within the scene, e.g.

<scene version="0.3.0">
<!-- Instantiate a unidirectional path tracer,

which renders paths up to a depth of 5 -->
<integrator type="path">

<integer name="maxDepth" value="5"/>
</integrator>

<!-- Some geometry to be rendered -->
<shape type="sphere">

<bsdf type="diffuse"/>
</shape>

</scene>

This section gives a brief overview of the available choices along with their parameters.

Path length

(a) Max. length = 1 (b) Max. length = 2 (c) Max. length = 3 (d) Max. length =∞

Figure 13: These Cornell box renderings demonstrate the visual effect of amaximumpath length. As the paths
are allowed to grow longer, the color saturation increases due to multiple scattering interactions
with the colored surfaces. At the same time, the computation time increases.

Almost all integrators use the concept of path length. Here, a path refers to a chain of scattering
events that starts at the light source and ends at the eye or camera. It is often useful to limit the
path length (Figure 13) when rendering scenes for preview purposes, since this reduces the amount
of computation that is necessary per pixel. Furthermore, such renderings usually converge faster and
therefore need fewer samples per pixel. When reference-quality is desired, one should always leave
the path length unlimited.

Mitsuba counts lengths starting at 1, which correspond to visible light sources (i.e. a path that starts
at the light source and ends at the eye or camera without any scattering interaction in between). A
length-2 path (also known as “direct illumination”) includes a single scattering event (Figure 14).

99

6. Plugin reference 6.9. Integrators

Figure 14: A ray of emitted light is scattered by an object and subsequently reaches the eye/camera. InMitsuba,
this is a length-2 path, since it has two edges.

Progressive versus non-progressive

Some of the rendering techniques in Mitsuba are progressive. What this means is that they display
a rough preview, which improves over time. Leaving them running indefinitely will continually re-
duce noise (e.g. in Metropolis Light Transport) or both noise and bias (e.g. in Progressive Photon
Mapping).

100

6. Plugin reference 6.9. Integrators

6.9.1. Path tracer with multiple importance sampling (path)

Parameter Type Description

maxDepth integer Maximum path depth (Default: -1)

strictNormals boolean Strict normals?

Extended path tracer – uses multiple importance sampling to combine two sampling strategies,
namely BSDF and luminaire sampling. This class does not attempt to solve the full radiative transfer
equation (see <tt>volpath</tt> if this is needed).

101

6. Plugin reference 6.10. Films

6.10. Films

This section contains a reference of the film plugins that come with Mitsuba. A film defines how
conducted measurements are stored and coverted into a final output format.

102

6. Plugin reference 6.10. Films

6.10.1. OpenEXR-based film (exrfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:
768, 576)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameter can optionally be provided to render a sub-
rectangle of the output (Default: Unused)

alpha boolean Include an alpha channel in the output image? (Default:
true)

banner boolean Include a small Mitsuba banner in the output image? (De-
fault: true)

This plugin implements a simple camera film that stores the captured image as an RGBA-based high
dynamic-range EXR file. It does not perform any gamma correction (i.e. the EXR file will contain
linear radiance values).

The measured spectral power distributions are converted to linear RGB based on CIE 1931 XYZ
color matching functions and ITU-R Rec. BT.709.

103

6. Plugin reference 6.10. Films

6.10.2. MATLAB M-file film (mfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:
768, 576)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameter can optionally be provided to render a sub-
rectangle of the output (Default: Unused)

alpha boolean Include an alpha channel in the output image? (Default:
true)

banner boolean Include a small Mitsuba banner in the output image? (De-
fault: true)

This plugin provides a camera film that exports luminance values as a matrix using the MATLAB
M-file format. This is useful when running Mitsuba as simulation step as part of a larger virtual
experiment. It can also come in handy when verifying parts of the renderer using a test suite.

When Mitsuba is started with the “test case mode” parameter (-t), this class will write triples con-
sisting of the luminance, variance, and sample count for every pixel (instead of just the luminance).

104

6. Plugin reference 6.10. Films

6.10.3. PNG-based film (pngfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:
768, 576)

cropOffsetX,
cropOffsetY,
cropWidth,
cropHeight

integer These parameter can optionally be provided to render a sub-
rectangle of the output (Default: Unused)

alpha boolean Include an alpha channel in the output image? (Default:
true)

banner boolean Include a small Mitsuba banner in the output image? (De-
fault: true)

toneMappingMethod
string Specifies the tonemapping method that should be used to

convert high-dynamic range images to 8 bits per channel.

1. gamma: Use a basic Gamma conversion

2. reinhard: Use a global version of the Reinhard [17]
tonemapping method

reinhardKey,
reinhardBurn

float When toneMappingMethod=reinhard, these two param-
eters specify the key and burn parameters of that model.
(Default: reinhardKey=0.18 and reinhardBurn=0)

This plugin implements a simple camera film that stores the captured image as an RGBA-based
low dynamic-range PNG file with gamma correction. The measured spectral power distributions are
converted to linear RGB based on CIE 1931 XYZ color matching functions and ITU-R Rec. BT.709.
If desired, the class can optionally apply a global version of the Reinhard tonemapping algorithm.

105

8. Coding style 7. Code structure

Part II.
Development guide
This chapter and the subsequent ones will provide an overview of the the coding conventions and
general architecture of Mitsuba. You should only read them if if you wish to interface with the API
in some way (e.g. by developing your own plugins). The coding style section is only relevant if you
plan to submit patches that are meant to become part of the main codebase.

7. Code structure

Mitsuba is split into four basic support libraries:

• The core library (libcore) implements basic functionality such as cross-platform file and
bitmap I/O, data structures, scheduling, as well as logging and plugin management.

• The rendering library (librender) contains abstractions needed to load and represent scenes
containing light sources, shapes, materials, and participating media.

• The hardware acceleration library (libhw) implements a cross-platform display library, an
object-oriented OpenGL wrapper, as well as support for rendering interactive previews of scenes.

• Finally, the bidirectional library (libbidir) contains a support layer that is used to implement
bidirectional rendering algorithms such as Bidirectional Path Tracing and Metropolis Light
Transport.

A detailed reference of these APIs is available at http://www.mitsuba-renderer.org/api. The
next sections present a few basic examples to get familiar with them.

8. Coding style

Indentation: The Mitsuba codebase uses tabs for indentation, which expand to four spaces. Please
make sure that you configure your editor this way, otherwise the source code layout will look garbled.

Placement of braces: Opening braces should be placed on the same line to make the best use of
vertical space, i.e.

if (x > y) {
x = y;

}

Placement of spaces: Placement of spaces follows K&R, e.g.

if (x == y) {
..

} else if (x > y) {
..

106

http://www.mitsuba-renderer.org/api

8. Coding style 8. Coding style

} else {
..

}

rather than things like this

if (x==y){
}
..

Name format: Names are always written in camel-case. Classes and structures start with a capital
letter, whereas member functions and attributes start with a lower-case letter. Attributes of classes
have the prefix m_. Here is an example:

class MyClass {
public:

MyClass(int value) : m_value(value) { }

inline void setValue(int value) { m_value = value; }
inline int getValue() const { return m_value; }

private:
int m_value;

};

Enumerations: For clarity, both enumerations types and entries start with a capital E, e.g.

enum ETristate {
ENo = 0,
EYes,
EMaybe

};

Constant methods and parameters: Declare member functions and their parameters as const
whenever this is possible and properly conveys the semantics.

Inline methods: Always inline trivial pieces of code, such as getters and setters.

Documentation: Headers files should contain Doxygen-compatible documentation. It is also a
good idea to add comments to a .cppfile to explain subtleties of an implemented algorithm. However,
anything pertaining to the API should go into the header file.

Boost: Use the boost libraries whenever this helps to save time or write more compact code.

Classes vs structures: In Mitsuba, classes usually go onto the heap, whereas structures may be allo-
cated both on the stack and the heap.

Classes that derive from Object implement a protected virtual deconstructor, which explicitly
prevents them from being allocated on the stack. The only way they can be deallocated is using the
built-in reference counting. This is done using the ref<> template, e.g.

107

8. Coding style 8. Coding style

if (..) {
ref<MyClass> instance = new MyClass();
instance->doSomething()

} // reference expires, instance will be deallocated

Separation of plugins: Mitsuba encourages that plugins are only used via the generic interface they
implement. You will find that almost all plugins (e.g. luminaires) don’t actually provide a header file,
hence they can only be accessed using the generic Luminaire interface they implement. If any kind
of special interaction between plugins is needed, this is usually an indication that the generic interface
should be extended to accomodate this.

108

9. Designing a custom integrator plugin 9. Designing a custom integrator plugin

9. Designing a custom integrator plugin

Suppose you want to design a custom integrator to render scenes in Mitsuba. There are two general
ways you can do this, and which one you should take mostly depends on the characteristics of your
particular integrator.

The framework distinguishes between sampling-based integrators and generic ones. A sampling-
based integrator is able to generate (usually unbiased) estimates of the incident radiance along a spec-
ified rays, and this is done a large number of times to render a scene. A generic integrator is more like
a black box, where no assumptions are made on how the the image is created. For instance, the VPL
renderer uses OpenGL to rasterize the scene using hardware acceleration, which certainly doesn’t fit
into the sampling-based pattern. For that reason, it must be implemented as a generic integrator.

Generally, if you can package up your code to fit into the SampleIntegrator interface, you should
do it, because you’ll get parallelization and network rendering essentially for free. This is done by
transparently sending instances of your integrator class to all participating cores and assigning small
image blocks for each one to work on. Also, sampling-based integrators can be nested within some
other integrators, such as an irradiance cache or an adaptive integrator. This cannot be done with
generic integrators due to their black-box nature. Note that it is often still possible to parallelize
generic integrators, but this involves significantly more work.

In this section, we’ll design a rather contrived sampling-based integrator, which renders a monochro-
matic image of your scene, where the intensity denotes the distance to the camera. But to get a feel
for the overall framework, we’ll start with an even simpler one, that just renders a solid-color image.

9.1. Basic implementation

In Mitsuba’s src/integrators directory, create a file named myIntegrator.cpp.

#include <mitsuba/render/scene.h>

MTS_NAMESPACE_BEGIN

class MyIntegrator : public SampleIntegrator {
public:

MTS_DECLARE_CLASS()
};

MTS_IMPLEMENT_CLASS_S(MyIntegrator, false, SampleIntegrator)
MTS_EXPORT_PLUGIN(MyIntegrator, "A contrived integrator");
MTS_NAMESPACE_END

The scene.h header file contains all of the dependencies we’ll need for now. To avoid conflicts with
other libraries, the whole framework is located in a separate namespace named mitsuba, and the
lines starting with MTS_NAMESPACE ensure that our integrator is placed there as well.

The two lines starting with MTS_DECLARE_CLASS and MTS_IMPLEMENT_CLASS ensure that this
class is recognized as a native Mitsuba class. This is necessary to get things like run-time type infor-
mation, reference counting, and serialization/unserialization support. Let’s take a look at the second
of these lines, because it contains several important pieces of information:

The suffix S in MTS_IMPLEMENT_CLASS_S specifies that this is a serializable class, which means
that it can be sent over the network or written to disk and later restored. That also implies that certain
methods need to be provided by the implementation — we’ll add those in a moment.

109

9. Designing a custom integrator plugin 9.1. Basic implementation

The three following parameters specify the name of this class (MyIntegrator), the fact that it is
not an abstract class (false), and the name of its parent class (SampleIntegrator).

Just below, you can see a line that starts with MTS_EXPORT_PLUGIN. As the name suggests, this line
is only necessary for plugins, and it ensures that the specified class (MyIntegrator) is what you want
to be instantiated when somebody loads this plugin. It is also possible to supply a short descriptive
string.

Let’s add an instance variable and a constructor:

public:
/// Initialize the integrator with the specified properties
MyIntegrator(const Properties &props) : SampleIntegrator(props) {

Spectrum defaultColor;
defaultColor.fromLinearRGB(0.2f, 0.5f, 0.2f);
m_color = props.getSpectrum("color", defaultColor);

}

private:
Spectrum m_color;

This code fragment sets up a default color (a light shade of green), which can be overridden from
the scene file. For example, one could instantiate the integrator from an XML document like this

<integrator type="myIntegrator">
<spectrum name="color" value="1.0"/>

</integrator>

in which case white would take preference.

Next, we need to add serialization and unserialization support:

/// Unserialize from a binary data stream
MyIntegrator(Stream *stream, InstanceManager *manager)
: SampleIntegrator(stream, manager) {
m_color = Spectrum(stream);

}

/// Serialize to a binary data stream
void serialize(Stream *stream, InstanceManager *manager) const {

SampleIntegrator::serialize(stream, manager);
m_color.serialize(stream);

}

This makes use of a stream abstraction similar in style to Java. A stream can represent various things,
such as a file, a console session, or a network communication link. Especially when dealing with
multiple machines, it is important to realize that the machines may use different binary represen-
tations related to their respective endianness. To prevent issues from arising, the Stream interface
provides many methods for writing and reading small chunks of data (e.g. writeShort, readFloat,
..), which automatically perform endianness translation. In our case, the Spectrum class already pro-
vides serialization/unserialization support, so we don’t really have to do anything.

Note that it is crucial that your code calls the serialization and unserialization implementations of
the superclass, since it will also read/write some information to the stream.

110

9. Designing a custom integrator plugin 9.1. Basic implementation

We haven’t used the manager parameter yet, so here is a quick overview of what it does: if many
cases, we don’t just want to serialize a single class, but a whole graph of objects. Some may be refer-
enced many times from different places, and potentially there are even cycles. If we just naively called
the serialization and unserialization implementation of members recursively within each class, we’d
waste much bandwitdth and potentially end up stuck in an infinite recursion.

This is where the instance manager comes in. Every time you want to serialize a heap-allocated
object (suppose it is of type SomeClass), instead of calling its serialize method, write

ref<SomeClass> myObject = ...;
manager->serialize(stream, myObject.get());

Later, to unserialize the object from a stream again, write

ref<SomeClass> myObject = static_cast<SomeClass *>(manager->getInstance(stream));

Behind the scenes, the object manager adds annotations to the data stream, which ensure that you
will end up with the exact same reference graph on the remote side, while only one copy of every object
is transmitted and no infinite recursion can occur. But we digress – let’s go back to our integrator.

The last thing to add is a function, which returns an estimate for the radiance along a ray differential:
here, we simply return the stored color

/// Query for an unbiased estimate of the radiance along <tt>r</tt>
Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {

return m_color;
}

Let’s try building the plugin: edit the SConstruct file in the main directory, and add the following
line after the comment ”# Integrators”:

plugins += env.SharedLibrary('plugins/myIntegrator', ['src/integrators/
myIntegrator.cpp'])

After calling, scons, you should be able to use your new integrator in parallel rendering jobs and
you’ll get something like this:

111

9. Designing a custom integrator plugin 9.2. Visualizing depth

That is admittedly not very exciting — so let’s do some actual computation.

9.2. Visualizing depth

Add an instance variable Float m_maxDist; to the implementation. This will store the maximum
distance from the camera to any object, which is needed to map distances into the [0, 1] range. Note
the upper-case Float— this means that either a single- or a double-precision variable is substituted
based the compilation flags. This variable constitutes local state, thus it must not be forgotten in the
serialization- and unserialization routines: append

m_maxDist = stream->readFloat();

and

stream->writeFloat(m_maxDist);

to the unserialization constructor and the serializemethod, respectively.
We’ll conservatively bound the maximum distance by measuring the distance to all corners of the

bounding box, which encloses the scene. To avoid having to do this every time Li() is called, we can
override the preprocess function:

/// Preprocess function -- called on the initiating machine
bool preprocess(const Scene *scene, RenderQueue *queue,

const RenderJob *job, int sceneResID, int cameraResID,
int samplerResID) {

SampleIntegrator::preprocess(scene, queue, job, sceneResID,
cameraResID, samplerResID);

const AABB &sceneAABB = scene->getAABB();
Point cameraPosition = scene->getCamera()->getPosition();

112

9. Designing a custom integrator plugin 9.2. Visualizing depth

m_maxDist = - std::numeric_limits<Float>::infinity();

for (int i=0; i<8; ++i)
m_maxDist = std::max(m_maxDist,

(cameraPosition - sceneAABB.getCorner(i)).length());

return true;
}

The bottom of this function should be relatively self-explanatory. The numerous arguments at the
top are related to the parallelization layer, which will be considered in more detail in the next section.
Briefly, the render queue provides synchronization facilities for render jobs (e.g. one can wait for a
certain job to terminate). And the integer parameters are global resource identifiers. When a network
render job runs, many associated pieces of information (the scene, the camera, etc.) are wrapped into
global resource chunks shared amongst all nodes, and these can be referenced using such identifiers.

One important aspect of the preprocess function is that it is executed on the initiating node and
before any of the parallel rendering begins. This can be used to compute certain things only once.
Any information updated here (such as m_maxDist) will be forwarded to the other nodes before the
rendering begins.

Now, replace the body of the Limethod with

if (rRec.rayIntersect(r)) {
Float distance = rRec.its.t;
return Spectrum(1.0f - distance/m_maxDist) * m_color;

}
return Spectrum(0.0f);

and the distance renderer is done!

There are a few more noteworthy details: first of all, the “usual” way to intersect a ray against the scene
actually works like this:

Intersection its;
Ray ray = ...;
if (scene->rayIntersect(ray, its)) {

113

9. Designing a custom integrator plugin 9.3. Nesting

/* Do something with the intersection stored in 'its' */
}

As you can see, we did something slightly different in the distance renderer fragment above (we called
RadianceQueryRecord::rayIntersect() on the supplied parameter rRec), and the reason for
this is nesting.

9.3. Nesting

The idea of of nesting is that sampling-based rendering techniques can be embedded within each
other for added flexibility: for instance, one might concoct a 1-bounce indirect rendering technique
complete with irradiance caching and adaptive integration simply by writing the following into a
scene XML file:

<!-- Adaptively integrate using the nested technique -->
<integrator type="errctrl">

<!-- Irradiance caching + final gathering with the nested technique -->
<integrator type="irrcache">

<!-- Simple direct illumination technique -->
<integrator type="direct">

</integrator>
</integrator>

To support this kind of complex interaction, some information needs to be passed between the in-
tegrators, and the RadianceQueryRecord parameter of the function SampleIntegrator::Li is
used for this.

This brings us back to the odd way of computing an intersection a moment ago: the reason why
we didn’t just do this by calling scene->rayIntersect() is that our technique might actually be
nested within a parent technique, which has already computed this intersection. To avoid wasting
resources, the function rRec.rayIntersect first determines whether an intersection record has
already been provided. If yes, it does nothing. Otherwise, it takes care of computing one.

The radiance query record also lists the particular types of radiance requested by the parent inte-
grator – your implementation should respect these as much as possible. Your overall code might for
example be structured like this:

Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {
Spectrum result;
if (rRec.type & RadianceQueryRecord::EEmittedRadiance) {
// Emitted surface radiance contribution was requested
result += ...;

}
if (rRec.type & RadianceQueryRecord::EDirectRadiance) {
// Direct illumination contribution was requested
result += ...;

}
...
return result;

}

114

10. Parallelization layer 10. Parallelization layer

10. Parallelization layer

Mitsuba is built on top of a flexible parallelization layer, which spreads out various types of compu-
tation over local and remote cores. The guiding principle is that if an operation can potentially take
longer than a few seconds, it ought to use all the cores it can get.

Here, we will go through a basic example, which will hopefully provide sufficient intuition to realize
more complex tasks. To obtain good (i.e. close to linear) speedups, the parallelization layer depends
on several key assumptions of the task to be parallelized:

• The task can easily be split up into a discrete number of work units, which requires a negligible
amount of computation.

• Each work unit is small in footprint so that it can easily be transferred over the network or
shared memory.

• A work unit constitutes a significant amount of computation, which by far outweighs the cost
of transmitting it to another node.

• The work result obtained by processing a work unit is again small in footprint, so that it can
easily be transferred back.

• Merging all work results to a solution of the whole problem requires a negligible amount of
additional computation.

This essentially corresponds to a parallel version of Map (one part of Map&Reduce) and is ideally
suited for most rendering workloads.

The example we consider here computes a ROT13 “encryption” of a string, which most certainly
violates the “significant amount of computation” assumption. It was chosen due to the inherent par-
allelism and simplicity of this task. While of course over-engineered to the extreme, the example
hopefully communicates how this framework might be used in more complex scenarios.

We will implement this program as a plugin for the utility launcher mtsutil, which frees us from
having to write lots of code to set up the framework, prepare the scheduler, etc.

We start by creating the utility skeleton file src/utils/rot13.cpp:

#include <mitsuba/render/util.h>

MTS_NAMESPACE_BEGIN

class ROT13Encoder : public Utility {
public:

int run(int argc, char **argv) {
cout << "Hello world!" << endl;
return 0;

}

MTS_DECLARE_UTILITY()
};

MTS_EXPORT_UTILITY(ROT13Encoder, "Perform a ROT13 encryption of a string")
MTS_NAMESPACE_END

115

10. Parallelization layer 10. Parallelization layer

The file must also be added to the build system: insert the line

plugins += env.SharedLibrary('plugins/rot13', ['src/utils/rot13.cpp'])

into the SConscript (near the comment “Build the plugins – utilities”). After compiling
using scons, the mtsutil binary should automatically pick up your new utility plugin:

$ mtsutil
..
The following utilities are available:

addimages Generate linear combinations of EXR images
rot13 Perform a ROT13 encryption of a string

It can be executed as follows:

$ mtsutil rot13
2010-08-16 18:38:27 INFO main [src/mitsuba/mtsutil.cpp:276] Mitsuba version 0.1.1,

Copyright (c) 2010 Wenzel Jakob
2010-08-16 18:38:27 INFO main [src/mitsuba/mtsutil.cpp:350] Loading utility "
rot13" ..

Hello world!

Our approach for implementing distributed ROT13 will be to treat each character as an indpendent
work unit. Since the ordering is lost when sending out work units, we must also include the position
of the character in both the work units and the work results.

All of the relevant interfaces are contained in include/mitsuba/core/sched.h. For reference,
here are the interfaces of WorkUnit and WorkResult:

/**
* Abstract work unit. Represents a small amount of information
* that encodes part of a larger processing task.
*/
class MTS_EXPORT_CORE WorkUnit : public Object {
public:

/// Copy the content of another work unit of the same type
virtual void set(const WorkUnit *workUnit) = 0;

/// Fill the work unit with content acquired from a binary data stream
virtual void load(Stream *stream) = 0;

/// Serialize a work unit to a binary data stream
virtual void save(Stream *stream) const = 0;

/// Return a string representation
virtual std::string toString() const = 0;

MTS_DECLARE_CLASS()
protected:

/// Virtual destructor
virtual ~WorkUnit() { }

};
/**
* Abstract work result. Represents the information that encodes

116

10. Parallelization layer 10. Parallelization layer

* the result of a processed <tt>WorkUnit</tt> instance.
*/
class MTS_EXPORT_CORE WorkResult : public Object {
public:

/// Fill the work result with content acquired from a binary data stream
virtual void load(Stream *stream) = 0;

/// Serialize a work result to a binary data stream
virtual void save(Stream *stream) const = 0;

/// Return a string representation
virtual std::string toString() const = 0;

MTS_DECLARE_CLASS()
protected:

/// Virtual destructor
virtual ~WorkResult() { }

};

In our case, the WorkUnit implementation then looks like this:

class ROT13WorkUnit : public WorkUnit {
public:

void set(const WorkUnit *workUnit) {
const ROT13WorkUnit *wu =

static_cast<const ROT13WorkUnit *>(workUnit);
m_char = wu->m_char;
m_pos = wu->m_pos;

}

void load(Stream *stream) {
m_char = stream->readChar();
m_pos = stream->readInt();

}

void save(Stream *stream) const {
stream->writeChar(m_char);
stream->writeInt(m_pos);

}

std::string toString() const {
std::ostringstream oss;
oss << "ROT13WorkUnit[" << endl

<< " char = '" << m_char << "'," << endl
<< " pos = " << m_pos << endl
<< "]";

return oss.str();
}

inline char getChar() const { return m_char; }
inline void setChar(char value) { m_char = value; }
inline int getPos() const { return m_pos; }

117

10. Parallelization layer 10. Parallelization layer

inline void setPos(int value) { m_pos = value; }

MTS_DECLARE_CLASS()
private:

char m_char;
int m_pos;

};

MTS_IMPLEMENT_CLASS(ROT13WorkUnit, false, WorkUnit)

The ROT13WorkResult implementation is not reproduced since it is almost identical (except that it
doesn’t need the set method). The similarity is not true in general: for most algorithms, the work
unit and result will look completely different.

Next, we need a class, which does the actual work of turning a work unit into a work result (a
subclass of WorkProcessor). Again, we need to implement a range of support methods to enable
the various ways in which work processor instances will be submitted to remote worker nodes and
replicated amongst local threads.

class ROT13WorkProcessor : public WorkProcessor {
public:

/// Construct a new work processor
ROT13WorkProcessor() : WorkProcessor() { }

/// Unserialize from a binary data stream (nothing to do in our case)
ROT13WorkProcessor(Stream *stream, InstanceManager *manager)

: WorkProcessor(stream, manager) { }

/// Serialize to a binary data stream (nothing to do in our case)
void serialize(Stream *stream, InstanceManager *manager) const {
}

ref<WorkUnit> createWorkUnit() const {
return new ROT13WorkUnit();

}

ref<WorkResult> createWorkResult() const {
return new ROT13WorkResult();

}

ref<WorkProcessor> clone() const {
return new ROT13WorkProcessor(); // No state to clone in our case

}

/// No internal state, thus no preparation is necessary
void prepare() { }

/// Do the actual computation
void process(const WorkUnit *workUnit, WorkResult *workResult,

const bool &stop) {
const ROT13WorkUnit *wu

= static_cast<const ROT13WorkUnit *>(workUnit);
ROT13WorkResult *wr = static_cast<ROT13WorkResult *>(workResult);

118

10. Parallelization layer 10. Parallelization layer

wr->setPos(wu->getPos());
wr->setChar((std::toupper(wu->getChar()) - 'A' + 13) % 26 + 'A');

}
MTS_DECLARE_CLASS()

};
MTS_IMPLEMENT_CLASS_S(ROT13WorkProcessor, false, WorkProcessor)

Since our work processor has no state, most of the implementations are rather trivial. Note the stop
field in the process method. This field is used to abort running jobs at the users requests, hence it
is a good idea to periodically check its value during lengthy computations.

Finally, we need a so-called parallel process instance, which is responsible for creating work units
and stitching work results back into a solution of the whole problem. The ROT13 implementation
might look as follows:

class ROT13Process : public ParallelProcess {
public:

ROT13Process(const std::string &input) : m_input(input), m_pos(0) {
m_output.resize(m_input.length());

}

ref<WorkProcessor> createWorkProcessor() const {
return new ROT13WorkProcessor();

}

std::vector<std::string> getRequiredPlugins() {
std::vector<std::string> result;
result.push_back("rot13");
return result;

}

EStatus generateWork(WorkUnit *unit, int worker /* unused */) {
if (m_pos >= (int) m_input.length())

return EFailure;
ROT13WorkUnit *wu = static_cast<ROT13WorkUnit *>(unit);

wu->setPos(m_pos);
wu->setChar(m_input[m_pos++]);

return ESuccess;
}

void processResult(const WorkResult *result, bool cancelled) {
if (cancelled) // indicates a work unit, which was

return; // cancelled partly through its execution
const ROT13WorkResult *wr =

static_cast<const ROT13WorkResult *>(result);
m_output[wr->getPos()] = wr->getChar();

}

inline const std::string &getOutput() {
return m_output;

}

119

10. Parallelization layer 10. Parallelization layer

MTS_DECLARE_CLASS()
public:

std::string m_input;
std::string m_output;
int m_pos;

};
MTS_IMPLEMENT_CLASS(ROT13Process, false, ParallelProcess)

The generateWork method produces work units until we have moved past the end of the string,
after which it returns the status code EFailure. Note the method getRequiredPlugins(): this
is necessary to use the utility across machines. When communicating with another node, it ensures
that the remote side loads the ROT13* classes at the right moment.

To actually use the ROT13 encoder, we must first launch the newly created parallel process from
the main utility function (the ‘Hello World’ code we wrote earlier). We can adapt it as follows:

int run(int argc, char **argv) {
if (argc < 2) {

cout << "Syntax: mtsutil rot13 <text>" << endl;
return -1;

}

ref<ROT13Process> proc = new ROT13Process(argv[1]);
ref<Scheduler> sched = Scheduler::getInstance();

/* Submit the encryption job to the scheduler */
sched->schedule(proc);

/* Wait for its completion */
sched->wait(proc);

cout << "Result: " << proc->getOutput() << endl;

return 0;
}

After compiling everything using scons, an simple example involving the utility would be to encode
a string (e.g. SECUREBYDESIGN), while forwarding all computation to a network machine. (-p0
disables all local worker threads). Adding a verbose flag (-v) shows some additional scheduling
information:

$ mtsutil -vc feynman -p0 rot13 SECUREBYDESIGN
2010-08-17 01:35:46 INFO main [src/mitsuba/mtsutil.cpp:201] Mitsuba version 0.1.1,

Copyright (c) 2010 Wenzel Jakob
2010-08-17 01:35:46 INFO main [SocketStream] Connecting to "feynman:7554"
2010-08-17 01:35:46 DEBUG main [Thread] Spawning thread "net0_r"
2010-08-17 01:35:46 DEBUG main [RemoteWorker] Connection to "feynman" established
(2 cores).

2010-08-17 01:35:46 DEBUG main [Scheduler] Starting ..
2010-08-17 01:35:46 DEBUG main [Thread] Spawning thread "net0"
2010-08-17 01:35:46 INFO main [src/mitsuba/mtsutil.cpp:275] Loading utility "
rot13" ..

120

10. Parallelization layer 10. Parallelization layer

2010-08-17 01:35:46 DEBUG main [Scheduler] Scheduling process 0: ROT13Process[
unknown]..

2010-08-17 01:35:46 DEBUG main [Scheduler] Waiting for process 0
2010-08-17 01:35:46 DEBUG net0 [Scheduler] Process 0 has finished generating work
2010-08-17 01:35:46 DEBUG net0_r[Scheduler] Process 0 is complete.
Result: FRPHEROLQRFVTA
2010-08-17 01:35:46 DEBUG main [Scheduler] Pausing ..
2010-08-17 01:35:46 DEBUG net0 [Thread] Thread "net0" has finished
2010-08-17 01:35:46 DEBUG main [Scheduler] Stopping ..
2010-08-17 01:35:46 DEBUG main [RemoteWorker] Shutting down
2010-08-17 01:35:46 DEBUG net0_r[Thread] Thread "net0_r" has finished

121

11. Python integration 11. Python integration

11. Python integration

A recent feature of Mitsuba is a simple Python interface to the renderer API. While the interface is
still limited at this point, it can already be used for many useful purposes. To access the API, start
your Python interpreter and enter

import mitsuba

For this to work on MacOS X, you will first have to run the “Apple Menu→Command-line access”
menu item from within Mitsuba. On Windows and non-packaged Linux builds, you may have to
update the extension search path before issuing the import command, e.g.:

import sys

Update the extension search path
(may vary depending on your setup)
sys.path.append('dist/python')

import mitsuba

For an overview of the currently exposed API subset, please refer to the following page: http://www.
mitsuba-renderer.org/api/group__libpython.html.

11.1. Basics

Generally, the Python API tries to mimic the C++ API as closely as possible. Where applicable, the
Python classes and methods replicate overloaded operators, overridable virtual function calls, and
default arguments. Under rare circumstances, some features are inherently non-portable due to fun-
damental differences between the two programming languages. In this case, the API documentation
will contain further information.

Mitsuba’s linear algebra-related classes are usable with essentially the same syntax as their C++
versions — for example, the following snippet creates and rotates a unit vector.

import mitsuba
from mitsuba.core import *

Create a normalized direction vector
myVector = normalize(Vector(1.0, 2.0, 3.0))

90 deg. rotation around the Y axis
trafo = Transform.rotate(Vector(0, 1, 0), 90)

Apply the rotation and display the result
print(trafo * myVector)

11.2. Recipes

The following section contains a series of “recipes” on how to do certain things with the help of the
Python bindings.

122

http://www.mitsuba-renderer.org/api/group__libpython.html
http://www.mitsuba-renderer.org/api/group__libpython.html

11. Python integration 11.2. Recipes

11.2.1. Loading a scene

The following script demonstrates how to use the FileResolver and SceneHandler classes to load
a Mitsuba scene from an XML file:

import mitsuba

from mitsuba.core import *
from mitsuba.render import SceneHandler

Get a reference to the thread's file resolver
fileResolver = Thread.getThread().getFileResolver()

Add the search path needed to load plugins
fileResolver.addPath('<path to mitsuba directory>')

Add the search path needed to load scene resources
fileResolver.addPath('<path to scene directory>')

Optional: supply parameters that can be accessed
by the scene (e.g. as $myParameter)
paramMap = StringMap()
paramMap['myParameter'] = 'value'

Load the scene from an XML file
scene = SceneHandler.loadScene(fileResolver.resolve("scene.xml"), paramMap)

Display a textual summary of the scene's contents
print(scene)

11.2.2. Rendering a loaded scene

Once a scene has been loaded, it can be rendered as follows:

from mitsuba.core import *
from mitsuba.render import RenderQueue, RenderJob
import multiprocessing

scheduler = Scheduler.getInstance()

Start up the scheduling system with one worker per local core
for i in range(0, multiprocessing.cpu_count()):

scheduler.registerWorker(LocalWorker('wrk%i' % i))
scheduler.start()

Create a queue for tracking render jobs
queue = RenderQueue()

scene.setDestinationFile('renderedResult')

Create a render job and insert it into the queue
job = RenderJob('myRenderJob', scene, queue)

123

11. Python integration 11.2. Recipes

job.start()

Wait for all jobs to finish and release resources
queue.waitLeft(0)
queue.join()

Print some statistics about the rendering process
print(Statistics.getInstance().getStats())

11.2.3. Rendering over the network

To render over the network, you must first set up one or more machines that run the mtssrv server
(see Section 4.3). A network node can then be registered with the scheduler as follows:

Connect to a socket on a named host or IP address
7554 is the default port of 'mtssrv'
stream = SocketStream('128.84.103.222', 7554)

Create a remote worker instance that communicates over the stream
remoteWorker = RemoteWorker('netWorker', stream)

scheduler = Scheduler.getInstance()
Register the remote worker (and any other potential workers)
scheduler.registerWorker(remoteWorker)
scheduler.start()

11.2.4. Constructing custom scenes from Python

Dynamically constructing Mitsuba scenes entails loading a series of external plugins, instantiating
them with custom parameters, and finally assembling them into an object graph. For instance, the
following snippet shows how to create a basic perspective camera with a film that writes PNG images:

from mitsuba.core import *
pmgr = PluginManager.getInstance()

Encodes parameters on how to instantiate the 'perspective' plugin
cameraProps = Properties('perspective')
cameraProps['toWorld'] = Transform.lookAt(

Point(0, 0, -10), # Camera origin
Point(0, 0, 0), # Camera target
Vector(0, 1, 0) # 'up' vector

)
cameraProps['fov'] = 45.0

Encodes parameters on how to instantiate the 'pngfilm' plugin
filmProps = Properties('pngfilm')
filmProps['width'] = 1920
filmProps['height'] = 1080

Load and instantiate the plugins
camera = pmgr.createObject(cameraProps)

124

11. Python integration 11.2. Recipes

film = pmgr.createObject(filmProps)

First configure the film and then add it to the camera
film.configure()
camera.addChild('film', film)

Now, the camera can be configured
camera.configure()

The above code fragment uses the plugin manager to construct a Camera instance from an external
plugin named perspective.so/dll/dylib and adds a child object named film, which is a Film
instance loaded from the plugin pngfilm.so/dll/dylib. Each time after instantiating a plugin, all
child objects are added, and finally the plugin’s configure()method must be called.

Creating scenes in this manner ends up being rather laborious. Since Python comes with a pow-
erful dynamically-typed dictionary primitive, Mitsuba additionally provides a more “pythonic” alter-
native that makes use of this facility:

from mitsuba.core import *

pmgr = PluginManager.getInstance()
camera = pmgr.create({

'type' : 'perspective',
'toWorld' : Transform.lookAt(

Point(0, 0, -10),
Point(0, 0, 0),
Vector(0, 1, 0)

),
'film' : {

'type' : 'pngfilm',
'width' : 1920,
'height' : 1080

}
})

This code does exactly the same as the previous snippet. By the time PluginManager.create re-
turns, the object hierarchy has already been assembled, and the configure()method of every object
has been called.

Finally, here is an full example that creates a basic scene which can be rendered. It describes a
sphere lit by a point light, rendered using the direct illumination integrator.

from mitsuba.core import *
from mitsuba.render import Scene

scene = Scene()

Create a camera, film & sample generator
scene.addChild(pmgr.create({

'type' : 'perspective',
'toWorld' : Transform.lookAt(

Point(0, 0, -10),
Point(0, 0, 0),
Vector(0, 1, 0)

125

11. Python integration 11.2. Recipes

),
'film' : {

'type' : 'pngfilm',
'width' : 1920,
'height' : 1080

},
'sampler' : {

'type' : 'ldsampler',
'sampleCount' : 2

}
}))

Set the integrator
scene.addChild(pmgr.create({

'type' : 'direct'
}))

Add a light source
scene.addChild(pmgr.create({

'type' : 'point',
'position' : Point(5, 0, -10),
'intensity' : Spectrum(100)

}))

Add a shape
scene.addChild(pmgr.create({

'type' : 'sphere',
'center' : Point(0, 0, 0),
'radius' : 1.0,
'bsdf' : {

'type' : 'diffuse',
'reflectance' : Spectrum(0.4)

}
}))

scene.configure()

11.2.5. Taking control of the logging system

Many operations in Mitsuba will print one or more log messages during their execution. By default,
they will be printed to the console, which may be undesirable. Similar to the C++ side, it is possible to
define custom Formatter and Appender classes to interpret and direct the flow of these messages.

Roughly, a Formatter turns detailed information about a logging event into a human-readable
string, and a Appender routes it to some destination (e.g. by appending it to a file or a log viewer in
a graphical user interface). Here is an example of how to activate such extensions:

import mitsuba
from mitsuba.core import *

class MyFormatter(Formatter):

126

11. Python integration 11.2. Recipes

def format(self, logLevel, sourceClass, sourceThread, message, filename, line):

return '%s (log level: %s, thread: %s, class %s, file %s, line %i)' % \
(message, str(logLevel), sourceThread.getName(), sourceClass,
filename, line)

class MyAppender(Appender):
def append(self, logLevel, message):

print(message)

def logProgress(self, progress, name, formatted, eta):
print('Progress message: ' + formatted)

Get the logger associated with the current thread
logger = Thread.getThread().getLogger()
logger.setFormatter(MyFormatter())
logger.clearAppenders()
logger.addAppender(MyAppender())
logger.setLogLevel(EDebug)

Log(EInfo, 'Test message')

127

12. Acknowledgments 12. Acknowledgments

12. Acknowledgments

The architecture of Mitsuba as well as some individual components are based on implementations
discussed in: Physically Based Rendering - From Theory To Implementation by Matt Pharr and Greg
Humphreys. The architecture of the coherent path tracer traversal code was influenced by Radius
from Thierry Berger-Perrin. Many thanks go to my advisor Steve Marschner, who let me spend time
on this project. Some of the GUI icons were taken from the Humanity icon set by Canonical Ltd. The
material test scene was created by Jonas Pilo, and the environment map it uses is courtesy of Bernhard
Vogl.

The included index of refraction data files for conductors are copied from PBRT. They are origi-
nally from the Luxpop database (www.luxpop.com) and are based on data by Palik et al. [14] and
measurements of atomic scattering factors made by the Center For X-Ray Optics (CXRO) at Berkeley
and the Lawrence Livermore National Laboratory (LLNL).

The following people have kindly contributed code or bugfixes:

• Miloŝ Haŝan

• Tom Kazimiers

• Marios Papas

• Edgar Velázquez-Armendáriz

• Jirka Vorba

Mitsuba makes heavy use of the following amazing libraries and tools:

• Qt 4 by Nokia

• OpenEXR by Industrial Light & Magic

• Xerces-C++ by the Apache Foundation

• Eigen by Benoît Jacob and Gaël Guennebaud

• The Boost C++ class library

• GLEW by Milan Ikits, Marcelo E. Magallon and Lev Povalahev

• Mersenne Twister by Makoto Matsumoto and Takuji Nishimura

• Cubature by Steven G. Johnson

• COLLADA DOM by Sony Computer Entertainment

• libjpeg by the Independent JPEG Group

• libpng by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson and others

• libply by Ares Lagae

• BWToolkit by Brandon Walkin

• POSIX Threads for Win32 by Ross Johnson

• The SCons build system by the SCons Foundation

128

www.luxpop.com

References References

References

[1] Ashikhmin, M., and Shirley, P. An anisotropic phong BRDF model. Graphics tools: The jgt
editors’ choice (2005), 303.

[2] Blinn, J. F. Simulation of wrinkled surfaces. In Proceedings of the 5th annual conference on
Computer graphics and interactive techniques (New York, NY, USA, 1978), SIGGRAPH ’78, ACM,
pp. 286–292.

[3] Dür, A. An Improved Normalization For The Ward Reflectance Model. Journal of graphics, gpu,
and game tools 11, 1 (2006), 51–59.

[4] Geisler-Moroder, D., and Dür, A. A new ward brdf model with bounded albedo. In Com-
puter Graphics Forum (2010), vol. 29, Wiley Online Library, pp. 1391–1398.

[5] Hanrahan, P., and Krueger, W. Reflection from layered surfaces due to subsurface scattering.
In Proceedings of the 20th annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 1993), SIGGRAPH ’93, ACM, pp. 165–174.

[6] Henyey, L., and Greenstein, J. Diffuse radiation in the galaxy. The Astrophysical Journal 93
(1941), 70–83.

[7] Irawan, P. Appearance of woven cloth. PhD thesis, Cornell University, Ithaca, NY, USA, 2008.
http://ecommons.library.cornell.edu/handle/1813/8331.

[8] Jakob, W., Arbree, A., Moon, J., Bala, K., and Marschner, S. A radiative transfer frame-
work for rendering materials with anisotropic structure. ACM Transactions on Graphics (TOG),
Proceedings of SIGGRAPH 2010 29, 4 (2010), 53.

[9] Jensen, H., Marschner, S., Levoy, M., and Hanrahan, P. A practical model for subsurface
light transport. In Proceedings of the 28th annual conference onComputer graphics and interactive
techniques (2001), ACM, pp. 511–518.

[10] Kajiya, J., and Kay, T. Rendering fur with three dimensional textures. In ACM Siggraph Com-
puter Graphics (1989), vol. 23, ACM, pp. 271–280.

[11] Lafortune, E. P., and Willems, Y. D. Using the modified phong reflectance model for physi-
cally based rendering. Tech. rep., Cornell University, 1994.

[12] Ngan, A., Durand, F., and Matusik, W. Experimental analysis of brdf models. In Proceedings
of the Eurographics Symposium on Rendering (2005), vol. 2, Eurographics Association.

[13] Oren, M., and Nayar, S. Generalization of Lambert’s reflectance model. In Proceedings of the
21st annual conference on Computer graphics and interactive techniques (1994), ACM, pp. 239–
246.

[14] Palik, E., and Ghosh, G. Handbook of optical constants of solids. Academic press, 1998.

[15] Phong, B.-T. Illumination for Computer Generated Pictures. Communications of the ACM 18,
6 (1975), 311–317.

129

http://ecommons.library.cornell.edu/handle/1813/8331

References References

[16] Preetham, A., Shirley, P., and Smits, B. A practical analytic model for daylight. In Proceed-
ings of the 26th annual conference on Computer graphics and interactive techniques (1999), ACM
Press/Addison-Wesley Publishing Co., pp. 91–100.

[17] Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. Photographic tone reproduction for
digital images. ACM Transactions on Graphics 21, 3 (2002), 267–276.

[18] Shirley, P., and Wang, C. Direct lighting calculation by monte carlo integration. In In proceed-
ings of the second EUROGRAPHICS workshop on rendering (1991), pp. 54–59.

[19] Smits, B. An RGB-to-spectrum conversion for reflectances. Graphics tools:The jgt editors’ choice
(2005), 291.

[20] Walter, B. Notes on the ward brdf. Tech. Rep. PCG-05-06, Program of Computer Graphics,
Cornell University, 2005.

[21] Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refrac-
tion through Rough Surfaces. Rendering Techniques (Proceedings EG Symposium on Rendering)
(2007).

[22] Ward, G. J. Measuring and modeling anisotropic reflection. In Proceedings of the 19th annual
conference on Computer graphics and interactive techniques (New York, NY, USA, 1992), SIG-
GRAPH ’92, ACM, pp. 265–272.

[23] Weidlich, A., and Wilkie, A. Arbitrarily layered micro-facet surfaces. In Proceedings of the
5th international conference on Computer graphics and interactive techniques in Australia and
Southeast Asia (New York, NY, USA, 2007), GRAPHITE ’07, ACM, pp. 171–178.

[24] Zhao, S., Jakob, W., Marschner, S., and Bala, K. Building Volumetric Appearance Mod-
els of Fabric using Micro CT Imaging. ACM Transactions on Graphics (TOG), Proceedings of
SIGGRAPH 2011 30, 4 (2011), 53.

130

	I Using Mitsuba
	1 About Mitsuba
	2 License
	3 Compiling the renderer
	3.1 Common steps
	3.2 Compilation flags
	3.3 Building on Ubuntu Linux
	3.3.1 Creating Ubuntu packages
	3.3.2 Releasing Ubuntu packages

	3.4 Building on Fedora Core
	3.4.1 Creating Fedora Core packages

	3.5 Building on Arch Linux
	3.5.1 Creating Arch Linux packages

	3.6 Building on Windows
	3.6.1 Integration with the Visual Studio interface

	3.7 Building on Mac OS X

	4 Basic usage
	4.1 Interactive frontend
	4.2 Command line interface
	4.2.1 Passing parameters
	4.2.2 Writing partial images to disk
	4.2.3 Rendering an animation

	4.3 Direct connection server
	4.4 Utility launcher

	5 Scene file format
	5.1 Property types
	5.1.1 Numbers
	5.1.2 Strings
	5.1.3 Color spectra
	5.1.4 Vectors, Positions
	5.1.5 Transformations

	5.2 Instancing
	5.3 Including external files

	6 Plugin reference
	6.1 Shapes
	6.1.1 Sphere intersection primitive (sphere)
	6.1.2 Cylinder intersection primitive (cylinder)
	6.1.3 Wavefront OBJ mesh loader (obj)
	6.1.4 Shape group for geometry instancing (shapegroup)
	6.1.5 Geometry instance (instance)
	6.1.6 Animated geometry instance (animatedinstance)
	6.1.7 Serialized mesh loader (serialized)
	6.1.8 Hair intersection shape (hair)
	6.1.9 PLY (Stanford Triangle Format) mesh loader (ply)

	6.2 Surface scattering models
	6.2.1 Smooth diffuse material (diffuse)
	6.2.2 Rough diffuse material (roughdiffuse)
	6.2.3 Smooth dielectric material (dielectric)
	6.2.4 Rough dielectric material (roughdielectric)
	6.2.5 Smooth conductor (conductor)
	6.2.6 Rough conductor material (roughconductor)
	6.2.7 Smooth plastic material (plastic)
	6.2.8 Rough plastic material (roughplastic)
	6.2.9 Smooth dielectric coating (coating)
	6.2.10 Rough dielectric coating (roughcoating)
	6.2.11 Bump map modifier (bump)
	6.2.12 Modified Phong BRDF (phong)
	6.2.13 Anisotropic Ward BRDF (ward)
	6.2.14 Hanrahan-Krueger BSDF (hk)
	6.2.15 Irawan & Marschner woven cloth BRDF (irawan)
	6.2.16 Two-sided BRDF adapter (twosided)
	6.2.17 Mixture material (mixturebsdf)
	6.2.18 Diffuse transmitter (difftrans)
	6.2.19 Opacity mask (mask)
	6.2.20 Subsurface scattering BRDF (sssbrdf)

	6.3 Textures
	6.3.1 Vertex color passthrough texture (vertexcolors)
	6.3.2 Bitmap texture (bitmap)
	6.3.3 Procedural grid texture (gridtexture)
	6.3.4 Checkerboard (checkerboard)

	6.4 Subsurface scattering
	6.5 Participating media
	6.5.1 Heterogeneous participating medium (heterogeneous)
	6.5.2 Homogeneous participating medium (homogeneous)

	6.6 Phase functions
	6.6.1 Isotropic phase function (isotropic)
	6.6.2 Henyey-Greenstein phase function (hg)
	6.6.3 Rayleigh phase function (rayleigh)
	6.6.4 Kajiya-Kay phase function (kkay)
	6.6.5 Micro-flake phase function (microflake)
	6.6.6 Mixture phase function (mixturephase)

	6.7 Volume data sources
	6.7.1 Grid-based volume data source (gridvolume)
	6.7.2 Caching volume data source (volcache)
	6.7.3 Constant-valued volume data source (constvolume)

	6.8 Luminaires
	6.8.1 Sun luminaire (sun)
	6.8.2 Skylight luminaire (sky)
	6.8.3 Sun and sky luminaire (sunsky)
	6.8.4 Environment map luminaire (envmap)

	6.9 Integrators
	6.9.1 Path tracer with multiple importance sampling (path)

	6.10 Films
	6.10.1 OpenEXR-based film (exrfilm)
	6.10.2 MATLAB M-file film (mfilm)
	6.10.3 PNG-based film (pngfilm)

	II Development guide
	7 Code structure
	8 Coding style
	9 Designing a custom integrator plugin
	9.1 Basic implementation
	9.2 Visualizing depth
	9.3 Nesting

	10 Parallelization layer
	11 Python integration
	11.1 Basics
	11.2 Recipes
	11.2.1 Loading a scene
	11.2.2 Rendering a loaded scene
	11.2.3 Rendering over the network
	11.2.4 Constructing custom scenes from Python
	11.2.5 Taking control of the logging system

	12 Acknowledgments

